«amaliy matematika va informatika» kafedrasi «Matematik fizika va differensial tenglamalar» fanidan kurs ishi


n-tartibli yuqori tartibli hosilaga nisbatan yechilgan oddiy differensial tenglama



Yüklə 31,75 Kb.
səhifə3/10
tarix13.12.2023
ölçüsü31,75 Kb.
#140012
1   2   3   4   5   6   7   8   9   10
«amaliy matematika va informatika» kafedrasi «Matematik fizika v-fayllar.org

n-tartibli yuqori tartibli hosilaga nisbatan yechilgan oddiy differensial tenglama deyiladi.

1. Ta’rif. Agar yoki lar va argumentlarga nisbatan chiziqli funksiyalar bo’lsa, tegishli differensial tenglama chiziqli deyiladi.

n-tartibli oddiy differensial tenglama deyiladi.

yuqori tartibli hosilaga nisbatan yechilgan yoki kanonik ko’rinishga keltirilgan n-tartibli oddiy differensial tenglama deyiladi. Bu tenglamalarda noma’lum funksiya bitta bo’lib, tenglamada uning hosilalari ishtirok etadi.


,
Bu yerda n ta noma’lum funksiya va n ta tenglama qatnashadi. Shuning uchun bu sistema birgalikda yechiladigan sistema bo’lib, uning tartibi
ga teng. Bu sistemani yechish uchun noqulay, shuning uchun uni quyidagicha qulayroq ko’rinishga keltiramiz. Barcha tenglamalardan larning yuqori tartibli hosilalariga nisbatan yechib,

tenglamaga differensial tenglamaning kanonik sistemasi deyiladi.

tenglamani yuqoridagidek soddalashtiramiz. Bu tengliklar yordamida sistemaning birinchi tenglamasini quyidagi ta tenglamaga almashtiramiz.

sistemaning ikkinchi tenglamasini quyidagi ta tenglamaga almashtiramiz.

Shunday qilib, sistemani unga ekvivalent bo’lgan quyidagi faqat 1-tartibli hosilalar qatnashgan

sistemaga almashtiramiz. Bu sistema ta noma’lum va shuncha tenglamadan tashkil topgan bo’lib,undagi o’zgaruvchilarni qaytadan nomerlab chiqib, quyidagi muhim sistemaga bo’lamiz. ga differensial tenglamalarning normal sistemasi deyiladi.

Demak, har qanday ko’rinishdagi sistemani ko’rinishga keltirish mumkin ekan,shuning uchun bundan keyin sistema bilan ish ko’ramiz.

Har qanday tenglamani tenglama ko’rinishda yozish mumkin,buning uchun

Endi tenglamani ko’rinishga keltiramiz. Buning uchun sistemaning birinchi tenglamasini bo’yicha differensiallaymiz:

dan gacha bo’lgan tenglamalardan larga nisbatan yechib, tenglamaga keltirib qo’yib,bitta tenglamani hosil qilamiz . Bu tenglamaning tartibi bo’ladi.


belgilasak,u holda

ko’rinishda yozish mumkin. Agar umumiy yechim xususiy yechim esa yoki lar tayinlangan bo’lsa, yechimi tayinlangan bo’lsa, xususiy yechim deb yoziladi. funksiyadan bo’yicha olingan hosila quyidagi ko’rinishda bo’ladi:


Yüklə 31,75 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin