Cantidad de niveles



Yüklə 445 b.
tarix26.07.2018
ölçüsü445 b.
#59723





El diseño factorial, como estructura de investigación, es la combinación de dos o más diseños simples (o unifactoriales); es decir, el diseño factorial requiere la manipulación simultánea de dos o más variables independientes (llamados factores), en un mismo experimento. ..//..

  • El diseño factorial, como estructura de investigación, es la combinación de dos o más diseños simples (o unifactoriales); es decir, el diseño factorial requiere la manipulación simultánea de dos o más variables independientes (llamados factores), en un mismo experimento. ..//..



En función de la cantidad de factores o variables de tratamiento, los formatos factoriales se denominan, también, diseños de tratamientos x tratamientos, tratamientos x tratamientos x tratamientos, etc, y se simbolizan por AxB, AxBxC, etc.

  • En función de la cantidad de factores o variables de tratamiento, los formatos factoriales se denominan, también, diseños de tratamientos x tratamientos, tratamientos x tratamientos x tratamientos, etc, y se simbolizan por AxB, AxBxC, etc.



  • Cantidad de niveles

  • Criterios Cantidad de combinaciones

  • Tipo de control



A) Según la cantidad de niveles o valores por factor, el diseño factorial se clasifica en:

  • A) Según la cantidad de niveles o valores por factor, el diseño factorial se clasifica en:

  • Cantidad constante

  • Cantidad de valores

  • Cantidad variable

  • ..//..



La notación del diseño es más sencilla cuando la cantidad de niveles por factor es igual (es decir, constante). Así, el diseño factorial de dos factores a dos niveles se representa por 2², el de tres factores por 23, etc. En términos generales, los diseños a dos niveles y con k factores se representan por 2k; a tres niveles, por 3k; a cuatro niveles por 4k, etc. ..//..

  • La notación del diseño es más sencilla cuando la cantidad de niveles por factor es igual (es decir, constante). Así, el diseño factorial de dos factores a dos niveles se representa por 2², el de tres factores por 23, etc. En términos generales, los diseños a dos niveles y con k factores se representan por 2k; a tres niveles, por 3k; a cuatro niveles por 4k, etc. ..//..



Cuando los factores actúan a más de dos niveles (es decir, cuando la cantidad de valores por factor es variable), el diseño se representa por 2 x 3, 2 x 3 x 4, etc. A su vez, cabe considerar la posibilidad que, tanto en un caso como en otro, el diseño sea balanceado (proporcionado) o no balanceado (no proporcionado); es decir, diseños con igual cantidad de sujetos por casilla y diseños con desigual cantidad de sujetos por casilla. ..//..

  • Cuando los factores actúan a más de dos niveles (es decir, cuando la cantidad de valores por factor es variable), el diseño se representa por 2 x 3, 2 x 3 x 4, etc. A su vez, cabe considerar la posibilidad que, tanto en un caso como en otro, el diseño sea balanceado (proporcionado) o no balanceado (no proporcionado); es decir, diseños con igual cantidad de sujetos por casilla y diseños con desigual cantidad de sujetos por casilla. ..//..



B) El segundo criterio hace hincapié en la cantidad de combinaciones de tratamiento realizadas o ejecutadas. Con base a este criterio, el diseño factorial se clasifican en:

  • B) El segundo criterio hace hincapié en la cantidad de combinaciones de tratamiento realizadas o ejecutadas. Con base a este criterio, el diseño factorial se clasifican en:

  • Diseño factorial completo

  • Cantidad de

  • combinaciones

  • de tratamiento

  • Diseño factorial incompleto

  • y fraccionado ..//..



Si el diseño factorial es completo, se realizan todas las posibles combinaciones entre los valores de las variables. Así, cada combinación de tratamientos determina un grupo experimental (grupo de tratamiento o casilla). Por ejemplo, el diseño factorial completo 2x2 determina cuatro grupos de tratamiento; un diseño 3x3 nueve grupos, etc. ..//..

  • Si el diseño factorial es completo, se realizan todas las posibles combinaciones entre los valores de las variables. Así, cada combinación de tratamientos determina un grupo experimental (grupo de tratamiento o casilla). Por ejemplo, el diseño factorial completo 2x2 determina cuatro grupos de tratamiento; un diseño 3x3 nueve grupos, etc. ..//..



Asumiendo que sólo se ejecute una parte del total de las combinaciones, el diseño factorial es incompleto o fraccionado, según el procedimiento seguido. ..//..

  • Asumiendo que sólo se ejecute una parte del total de las combinaciones, el diseño factorial es incompleto o fraccionado, según el procedimiento seguido. ..//..



C) En función del control de variables extrañas.

  • C) En función del control de variables extrañas.

  • Diseño factorial

  • completamente al azar

  • Diseño factorial de bloques

  • aleatorizados

  • Diseño factorial de Cuadrado

  • Grado de control Latino

  • Diseño factorial jerárquico o

  • anidado

  • Diseño factorial de medidas

  • repetidas

  • ..//..



Según el control de los factores extraños y la reducción de la variancia del error, el diseño factorial puede ser, en primer lugar, completamente al azar; es decir, aquel formato donde sólo se aplica el azar como técnica de control y donde los grupos se forman mediante la asignación aleatoria de los sujetos. ..//..

  • Según el control de los factores extraños y la reducción de la variancia del error, el diseño factorial puede ser, en primer lugar, completamente al azar; es decir, aquel formato donde sólo se aplica el azar como técnica de control y donde los grupos se forman mediante la asignación aleatoria de los sujetos. ..//..



En segundo lugar, el diseño factorial de bloques aleatorizados permite el control de una variable extraña. Según esa estrategia, cada bloque es un réplica completa del experimento, y los grupos intra bloque (dentro de cada bloque) se forman al azar. ..//..

  • En segundo lugar, el diseño factorial de bloques aleatorizados permite el control de una variable extraña. Según esa estrategia, cada bloque es un réplica completa del experimento, y los grupos intra bloque (dentro de cada bloque) se forman al azar. ..//..



Siguiendo con el criterio de bloques, el diseño factorial de Cuadrado Latino o de doble sistema de bloques controla dos fuentes de variación extrañas, aunque sólo se realiza una parte del total de combinaciones. ..//..

  • Siguiendo con el criterio de bloques, el diseño factorial de Cuadrado Latino o de doble sistema de bloques controla dos fuentes de variación extrañas, aunque sólo se realiza una parte del total de combinaciones. ..//..



El diseño factorial jerárquico o anidado requiere la manipulación experimental de la variable y, al mismo tiempo, la anidación (o inclusión) de una variable dentro de las combinaciones de tratamientos de los factores. ..//..

  • El diseño factorial jerárquico o anidado requiere la manipulación experimental de la variable y, al mismo tiempo, la anidación (o inclusión) de una variable dentro de las combinaciones de tratamientos de los factores. ..//..



Por último, el diseño factorial de medidas repetidas incorpora la técnica intra-sujeto; es decir, el sujeto actúa de control propio y recibe todas las combinaciones de tratamiento generados por la estructura factorial.

  • Por último, el diseño factorial de medidas repetidas incorpora la técnica intra-sujeto; es decir, el sujeto actúa de control propio y recibe todas las combinaciones de tratamiento generados por la estructura factorial.





  • 1. Efectos simples

  • 2. Efectos principales

  • 3. Efectos secundarios



Es posible definir el efecto factorial simple como el efecto puntual de una variable independiente o factor para cada valor de la otra.

  • Es posible definir el efecto factorial simple como el efecto puntual de una variable independiente o factor para cada valor de la otra.



Los efectos factoriales principales, a diferencia de los simples, son el impacto global de cada factor considerado de forma independiente, es decir, el efecto global de un factor se deriva del promedio de los dos efectos simples.

  • Los efectos factoriales principales, a diferencia de los simples, son el impacto global de cada factor considerado de forma independiente, es decir, el efecto global de un factor se deriva del promedio de los dos efectos simples.



El efecto secundario o de interacción se define por la relación entre los factores o variables independientes, es decir, el efecto cruzado.

  • El efecto secundario o de interacción se define por la relación entre los factores o variables independientes, es decir, el efecto cruzado.







  • Diseño factorial 2x2

  • A1B1 A1B2

  • A2B1 A2B2





Se pretende probar, en una situación de aprendizaje discriminante animal, si la magnitud del incentivo (variable incentivo) actúa según el aprendizaje sea simple o complejo (variable dificultad de aprendizaje o variable tarea). En esta hipótesis se afirma que a mayor incentivo, más acusada es la diferencia entre las dos tareas (simple o compleja) ..//..

  • Se pretende probar, en una situación de aprendizaje discriminante animal, si la magnitud del incentivo (variable incentivo) actúa según el aprendizaje sea simple o complejo (variable dificultad de aprendizaje o variable tarea). En esta hipótesis se afirma que a mayor incentivo, más acusada es la diferencia entre las dos tareas (simple o compleja) ..//..



Para ello, se registra la cantidad de discriminaciones correctas (variable dependiente) en función de un criterio general de aprendizaje, que asume como suficientes 15 ensayos. Se toma, como medida de la variable dependiente o de respuesta, la cantidad de respuestas correctas, para un máximo de 15, bajo el supuesto de que cada discriminación correcta tiene la misma dificultad de aprendizaje. ..//..

  • Para ello, se registra la cantidad de discriminaciones correctas (variable dependiente) en función de un criterio general de aprendizaje, que asume como suficientes 15 ensayos. Se toma, como medida de la variable dependiente o de respuesta, la cantidad de respuestas correctas, para un máximo de 15, bajo el supuesto de que cada discriminación correcta tiene la misma dificultad de aprendizaje. ..//..



Para probar la hipótesis propuesta se asignan 32 sujetos, de una muestra experimental, a las combinaciones de tratamientos o casillas (ocho sujetos por casilla), de forma totalmente aleatoria.

  • Para probar la hipótesis propuesta se asignan 32 sujetos, de una muestra experimental, a las combinaciones de tratamientos o casillas (ocho sujetos por casilla), de forma totalmente aleatoria.



Paso 1. Según la estructura del diseño son estimables tres efectos. Por esa razón, se plantean tres hipótesis de nulidad relativas a la variable A, variable B e interacción:

  • Paso 1. Según la estructura del diseño son estimables tres efectos. Por esa razón, se plantean tres hipótesis de nulidad relativas a la variable A, variable B e interacción:

  • H0: α1 = α2 = 0

  • H0: ß1 = ß2 = 0

  • H0: (αß)11 = (αß)12 = (αß)21 = (αß)22 = 0



Paso 2. Por hipótesis experimental, se espera que los efectos principales y el de la interacción sean significativos. Estas hipótesis se representan, al nivel estadístico, por

  • Paso 2. Por hipótesis experimental, se espera que los efectos principales y el de la interacción sean significativos. Estas hipótesis se representan, al nivel estadístico, por

  • H1: α1  α2, o no todas las α son cero

  • H1: ß1  ß2, o no todas las ß son cero

  • H1: (αß)11  (αß)12  (αß)21  (αß)22, o no todas las αß son cero.



Paso 3. El estadístico de la prueba es la F de Snedecor, con un α de 0.05, para las tres hipótesis de nulidad. El tamaño de la muestra experimental es N = 32 y el de las submuestras n = 8.

  • Paso 3. El estadístico de la prueba es la F de Snedecor, con un α de 0.05, para las tres hipótesis de nulidad. El tamaño de la muestra experimental es N = 32 y el de las submuestras n = 8.

  • Paso 4. Cálculo del valor empírico de las razones F. Para ello, se toma la matriz de datos del experimento.











  • Yijk = la puntuación del i sujeto bajo la combinación

  • del j valor del factor A y el k valor del factor B.

  • μ = la media común a todos los datos del

  • experimento.

  • αj = el efecto o impacto del j nivel de la variable de

  • tratamiento A.

  • ßk = efecto del k valor de la variable de tratamiento B.

  • (αß)jk = efecto de la interacción entre el j valor de

  • A y el k valor de B.

  • εijk = error experimental o efecto aleatorio de

  • muestreo.



SCA

  • SCA

  • SCentre-grupos SCB

  • SCtotal SCAB

  • SCintra-grupos SCS/AB





Del primer análisis se concluye que los grupos de tratamiento o experimentales difieren significativamente entre sí; la probabilidad de que un valor F de 15.28 ocurra al azar es menor que el riesgo asumido (α = 0.05)

  • Del primer análisis se concluye que los grupos de tratamiento o experimentales difieren significativamente entre sí; la probabilidad de que un valor F de 15.28 ocurra al azar es menor que el riesgo asumido (α = 0.05)

  • ..//..



En consecuencia, se procede a determinar las causas de esa significación. Nótese que este análisis no obedece a ningún propósito de investigación, ya que sólo sirve para detectar si, en términos globales, hay o no diferencia entre los grupos. De hecho, es como si se hubiera aplicado un modelo uni-factorial de la variancia.

  • En consecuencia, se procede a determinar las causas de esa significación. Nótese que este análisis no obedece a ningún propósito de investigación, ya que sólo sirve para detectar si, en términos globales, hay o no diferencia entre los grupos. De hecho, es como si se hubiera aplicado un modelo uni-factorial de la variancia.



SCentre-grupos = SCfactor A + SCfactor B +

  • SCentre-grupos = SCfactor A + SCfactor B +

  • SCinteracción AxB

  • El cálculo de estas Sumas de Cuadrados requiere la previa construcción de la tabla de los totales por columnas.







Paso 5. De los resultados del análisis se infiere la no-aceptación de las hipótesis de nulidad para los efectos principales de A y B, con riesgo de error del 5 por ciento. En cambio, se acepta la hipótesis de nulidad para la interacción. En suma, sólo se deriva la significación de los efectos principales.

  • Paso 5. De los resultados del análisis se infiere la no-aceptación de las hipótesis de nulidad para los efectos principales de A y B, con riesgo de error del 5 por ciento. En cambio, se acepta la hipótesis de nulidad para la interacción. En suma, sólo se deriva la significación de los efectos principales.



A1

  • A1

  • A2

  • B1 B2



A1

  • A1

  • A2

  • B1 B2



  • A1

  • A2

  • B1 B2



  • A2

  • A1

  • B1 B2









Se ha puesto de manifiesto que cuando las personas se sienten molestas ante la presencia de estímulos ambientales adversos incrementan su comportamiento agresivo. Berkowitz y Frodi (1979) realizaron un experimento para estudiar si el comportamiento agresivo depende no sólo de la presencia de estímulos ambientales adversos sino también del atractivo físico de la persona que supuestamente va a recibir la agresión.

  • Se ha puesto de manifiesto que cuando las personas se sienten molestas ante la presencia de estímulos ambientales adversos incrementan su comportamiento agresivo. Berkowitz y Frodi (1979) realizaron un experimento para estudiar si el comportamiento agresivo depende no sólo de la presencia de estímulos ambientales adversos sino también del atractivo físico de la persona que supuestamente va a recibir la agresión.



Se seleccionó una muestra de 56 mujeres y se formaron 4 grupos al azar. En el laboratorio, se informó a los sujetos de que iban a participar en un estudio sobre la dinámica paterno-filial. Así, en un primer momento, sólo la mitad de las participantes interactuaron con un cómplice del experimentador (que ejercía el rol de padre), entrenado para provocarles irritación. En un segundo momento, a todas se les pasó un vídeo en que una niña (que ejercía el rol filial) realizaba una tarea. ..//..

  • Se seleccionó una muestra de 56 mujeres y se formaron 4 grupos al azar. En el laboratorio, se informó a los sujetos de que iban a participar en un estudio sobre la dinámica paterno-filial. Así, en un primer momento, sólo la mitad de las participantes interactuaron con un cómplice del experimentador (que ejercía el rol de padre), entrenado para provocarles irritación. En un segundo momento, a todas se les pasó un vídeo en que una niña (que ejercía el rol filial) realizaba una tarea. ..//..



En esta segunda parte, para la mitad de las participantes el vídeo mostraba una niña con un aspecto físico atractivo y para la otra mitad la niña tenía un aspecto físico poco atractivo. Durante la presentación del vídeo las participantes debían corregir los errores que la niña cometía en la tarea mediante un estímulo auditivo que podía variar de 1 a 10 en una escala de intensidad.

  • En esta segunda parte, para la mitad de las participantes el vídeo mostraba una niña con un aspecto físico atractivo y para la otra mitad la niña tenía un aspecto físico poco atractivo. Durante la presentación del vídeo las participantes debían corregir los errores que la niña cometía en la tarea mediante un estímulo auditivo que podía variar de 1 a 10 en una escala de intensidad.











Se ha descrito, a lo largo de ese tema, los conceptos básicos del diseño factorial o estructura donde se manipulan, dentro de una misma situación experimental, dos o más variables independientes (o factores). En aras a una mejor exposición del modelo se ha descrito, básicamente, el diseño bifactorial a dos niveles, dentro del contexto de grupos completamente al azar. ..//..

  • Se ha descrito, a lo largo de ese tema, los conceptos básicos del diseño factorial o estructura donde se manipulan, dentro de una misma situación experimental, dos o más variables independientes (o factores). En aras a una mejor exposición del modelo se ha descrito, básicamente, el diseño bifactorial a dos niveles, dentro del contexto de grupos completamente al azar. ..//..



La disposición bifactorial aporta información no sólo de cada factor (efectos principales), sino de su acción combinada (efecto de interacción o efecto secundario). De esta forma, con la misma cantidad de sujetos requerida para experimentos de una sola variable independiente o factor, el investigador puede estudiar simultáneamente la acción de dos o más variables manipuladas. ..//..

  • La disposición bifactorial aporta información no sólo de cada factor (efectos principales), sino de su acción combinada (efecto de interacción o efecto secundario). De esta forma, con la misma cantidad de sujetos requerida para experimentos de una sola variable independiente o factor, el investigador puede estudiar simultáneamente la acción de dos o más variables manipuladas. ..//..



Ello supone un enorme ahorro de tiempo y esfuerzo. Si se tiene en cuenta la posibilidad de analizar la acción conjunta o cruzada de las variables, se concluye que el diseño factorial es una de las mejores herramientas de trabajo del ámbito psicológico, puesto que la conducta es función de muchos factores que actúan simultáneamente sobre el individuo. ..//..

  • Ello supone un enorme ahorro de tiempo y esfuerzo. Si se tiene en cuenta la posibilidad de analizar la acción conjunta o cruzada de las variables, se concluye que el diseño factorial es una de las mejores herramientas de trabajo del ámbito psicológico, puesto que la conducta es función de muchos factores que actúan simultáneamente sobre el individuo. ..//..







Yüklə 445 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin