Myocardial Function Human & Experimental Studies
Hall B Monday 14:00-16:00 Computer 28
14:00 3552. Free Breathing Navigator Gated Cine Cardiac MR at 3T: Feasibility Study in Patients.
Chika Obele1, Christopher Sibley2, Jatin Matta1, Roderic I. Pettigrew1, Ahmed M. Gharib1
1Integrative Cardiovascular Imaging Section, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States; 2Radiology and Imaging Sciences Department, National Institutes of Health.
We demonstrate the feasibility of obtaining free-breathing cine images utilizing a single respiratory navigator gating technique. This method was made possible by utilizing the high signal-to-noise ratio (SNR) available at 3T to apply parallel imaging methods allowing the acquisition of up to 30 cardiac phases within clinically acceptable imaging time. Compared to traditional breath-holding techniques this methods showed no statistical difference in qualitative and quantitative imaging parameters, thereby, could be used as an alternative for children and patients who are unable to hold their breath.
14:30 3553. Pericardial Fat Overlaying the Left Ventricle: A Better Indicator of Left Ventricular Function
Ning Hua1, Zhongjing Chen1, Sherman Bigornia1, Alkystis Phinikaridou1, Ye Qiao1, Caroline Apovian1, Hernan Jara1, Frederick Ruberg1, James Hamilton1
1Boston University, Boston, MA, United States
We imaged 40 metabolic syndrome (MetS) subjects as well as 17 healthy controls using MRI to determine if left ventricular (LV) function would be better correlated with LV fat instead of total pericardial fat. We found that in MetS subjects, stroke volume, cardiac output(CO), wall mass, end-diastolic volume and early filling (E) rate were inversely related to LV fat but not RV fat. The total pericardial fat was only correlated with CO and E-rate. This study suggests that LV pericardial fat rather than total pericardial fat might better correlate to LV function, the mechanism of which remains to be defined.
15:00 3554. Real-Time 3D Visualization of the Heart
Joseph Yitan Cheng1, Juan M. Santos1,2, John M. Pauly1
1Electrical Engineering, Stanford University, Stanford, CA, United States; 2HeartVista, Inc., Los Altos, CA, United States
The lack of proper visual guidance greatly impairs and lengthens cardiac procedures, such as atrial fibrillation therapy. In this work, we present a practical approach for fast data acquisition and 3D visualization. Acquisition is achieved with a fast multi-slice spiral sequence, and the visualization is achieved with a simple tissue segmentation and surface rendering. With the introduced depth perception, we provide real-time visual feedback for better control in interventional cardiac treatment.
15:30 3555. Assessment of Cardiac Remodelling After Myocardial Infarction in Diabetic Mice Using Self-Gated MRI
Kristine Skårdal1, Natale Rolim1, Ole Christian Eidheim2, Marius Widerøe1, Ulrik Wisløff1, Pål Erik Goa3, Marte Thuen1
1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; 2Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; 3Department of Medical Imaging, St. Olavs University Hospital, Trondheim, Norway
Type II diabetic patients suffer from higher susceptibility to develop post myocardial infarction (MI) heart failure. By adapting a self-gated FLASH to a murine model of the diabetic heart, we obtained multiple slices of the left ventricle and assessed changes in cardiac physiology post MI. Diabetic MI mice displayed decreased cardiac contractility and increased end-systolic volume, while non-diabetic MI mice presented increased end-diastolic volume with preserved ejection fraction. These data suggest that imaging of murine hearts is achievable using a self-gated FLASH, and the results are accurate enough to detect differences in functional analysis between genotypes and interventions.
Dostları ilə paylaş: |