Electronic Posters: Cardiovascular


Wednesday 13:30-15:30 Computer 40



Yüklə 492,08 Kb.
səhifə51/63
tarix05.01.2022
ölçüsü492,08 Kb.
#66641
1   ...   47   48   49   50   51   52   53   54   ...   63
Wednesday 13:30-15:30 Computer 40

13:30 3749. RGD-Functionalized Superparamagnetic Nanoemulsions for Target-Specific Imaging of Tumor Angiogenesis

Lisette Helene Deddens1, Peter A. Jarzyna2, Arjan W. Griffioen3, Zahi A. Fayad2, Rick Michiel Dijkhuizen1, Willem JM Mulder2

1Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; 2Imaging Science Laboratories, Mount Sinai School of Medicine, New York, United States; 3Angiogenesis Laboratory Amsterdam, VU Medical Center, Amsterdam, Netherlands

Nanoemulsions represent an attractive delivery platform for hydrophobic compounds since they improve their bioavailability and make their intravenous administration possible. This abstract demonstrates that the nanoemulsion platform, developed for passive delivery of hydrophobic compounds to tumor tissue, is also very suitable for targeted applications. Data show the applicability of αvβ3-specific RGD nanoemulsions in targeting tumor angiogenesis visualized by MRI, fluorescence microscopy and immunohistochemistry.



14:00 3750. Angiogenesis and Cell Tracking with Iron Oxide-Labeled Tumor Cells: Correlation Between Cell Growth and the Formation of the Tumor Vascular Bed Using High Resolution Magnetic Resonance (MR) Angiography, T1, T2 and T2* Mapping and Histology

Piotr A. Wielopolski1, Gyula Kotek1, Sandra van Tiel1, Gabriela Doeswijk1, Lejla Alic2, Gabriel P. Krestin1, Bernsen Monique1

1Radiology, Erasmus Medical Center, Rotterdam, zuid-holland, Netherlands; 2Informatics and Radiology, Erasmus Medical Center, Rotterdam, zuid-holland, Netherlands

To correlate super paramagnetic iron oxide (SPIO) labeled tumor cell growth and distribution with high resolution magnetic resonance (MR) angiography, T1, T2 and T2* parametric mapping and histology



14:30 3751. Targeted New Peptide Based Nanoparticles Toward High EGFR Expressing Cancer Cells for MRI

Ming-Hung Chen1, Gin-Chung Liu2,3, Twei-Shiun Jaw2,4, Yu-Ting Kuo2,3, Chiao-Yun Chen2,3, Yun-Ming Wang1

1Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; 2Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 3Department of Radiology,Faculty of Medicine,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 4Department of Radiology,Faculty of Medicine,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

In this study, the various core sizes of manganese ferrite nanoparticles (MnFe2O4) conjugated with D4 peptide (MnFe2O4-PEG-D4) were synthesized. The high relaxivity MnFe2O4 nanoparticles were obtained by thermal decomposition of Iron acetylacetonate and manganese acetylacetonate in hydrophobic solution at high boiling process. The surface of MnFe2O4 nanoparticles were coated with polyethylene glycol (PEG) and EGFR peptide ligand (D4: Leu-Ala-Arg-Leu-Leu-Thr) to improve their dispersion and ability to target EGFR. The negative signal enhancement of EGFR expressing cancer cells (SKBR-3 and PC-3) were significantly higher than that of low EGFR expressing cells (HEK-293).



15:00 3752. In Vivo Detection of a PARACEST Agent in Mouse Brain Tumors

Alex Xuexin Li1, Mojmir Suchy2, Chunhui Li1, Claire Poppe1, Joseph Gati1, Susan Meakin1, Robert H.E. Hudson2, Ravi S. Menon1, Robert Bartha1

1Robarts Research Institute, London, ON, Canada; 2The University of Western Ontario

A methodology to detect the on-resonance paramagnetic chemical exchange effects (OPARACHEE) of a PARACEST contrast agent: Tm3+-DOTAM-Glycine (Gly)-Lysine (Lys) in a mouse brain tumor model was developed. The OPARACHEE effect was isolated from the relaxation effects induced by the PARACEST agent using a control image and an OPARACHEE image. Isolated OPARACHEE contrast (1-3%) was observed in all animals. Immediately after contrast agent injection OPARACHEE contrast was observed and maintained at 1~2% in the hour following injection.




Yüklə 492,08 Kb.

Dostları ilə paylaş:
1   ...   47   48   49   50   51   52   53   54   ...   63




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin