Zamonaviy nazariyalarda toʻlqin funksiyalari va toʻlqin tenglamalari
Ushbu toʻlqin tenglamalarining barchasi doimiy ahamiyatga ega. Shredinger tenglamasi va Pauli tenglamasi koʻp hollarda relyativistik variantlarning ajoyib yaqinlashuvidir. Ularni amaliy masalalarda hal qilish relativistik oʻxshashlariga qaraganda ancha oson.
Klein-Gordon tenglamasi va Dirak tenglamasi relyativistik boʻlishiga qaramay, kvant mexanikasi va maxsus nisbiylik nazariyasining toʻliq mos kelishini anglatmaydi. Ushbu tenglamalar Shredinger tenglamasi kabi oʻrganiladigan kvant mexanikasi boʻlimi koʻpincha relyativistik kvant mexanikasi deb ataladi, lekin juda muvaffaqiyatli boʻlishi bilan birga, oʻz cheklovlariga (masalan, qarang. Lamb shift) va kontseptual muammolar (masalan, qarang Dirak dengizi) ga ega.
Nisbiylik tizimidagi zarrachalar soni doimiy emasligini muqarrar qiladi. Toʻliq yarashish uchun kvant maydon nazariyasi kerak. Ushbu nazariyada toʻlqin tenglamalari va toʻlqin funksiyalari oʻz oʻrniga ega, ammo biroz boshqacha koʻrinishda. Asosiy qiziqish ob’ektlari toʻlqin funksiyalari emas, balki Gilbert holatlar fazosidagi maydon operatorlari (yoki „operator“ tushuniladigan maydonlar) deb ataladigan operatorlardir (keyingi boʻlimda tasvirlanadi). Maʼlum boʻlishicha, Hilbert fazosini qurish uchun dastlabki relyativistik toʻlqin tenglamalari va ularning yechimlari hali ham zarur. Bundan tashqari, erkin maydonlar operatorlari, yaʼni oʻzaro taʼsirlar mavjud emas deb hisoblanganda, koʻp hollarda maydonlar (toʻlqin funksiyalari) bilan bir xil tenglamani (rasmiy ravishda) qondiradi.
Bu erkin maydon tenglamalari uchun amal qiladi; oʻzaro taʼsirlar kiritilmagan. Agar Lagranjian zichligi (shu jumladan oʻzaro taʼsirlar) mavjud boʻlsa, u holda Lagranj formalizmi klassik darajadagi harakat tenglamasini beradi. Bu tenglama juda murakkab boʻlishi mumkin va uni hal qilish mumkin emas. Har qanday yechim zarrachalarning qatʼiy soniga ishora qiladi va oddiy „birinchi kvantlangan“ kvant nazariyasidagi kabi tashqi potentsiallarni emas, balki zarralarni yaratish va yoʻq qilishni oʻz ichiga olgan ushbu nazariyalarda aytilgan „oʻzaro taʼsir“ atamasini hisobga olmaydi.
String nazariyasida vaziyat oʻxshashligicha qolmoqda. Masalan, impuls fazosidagi toʻlqin funksiyasi keskin aniqlanmagan impulsli zarrachaning (torning) umumiy holatida Furye kengayish koeffitsienti rolini oʻynaydi.
Fazo-vaqt toʻlqin funksiyalari Zarrachaning holati uning toʻlqin funksiyasi bilan toʻliq tavsiflanadi, bu yerda x — koordinata va t — vaqt. Bu x va t ikkita haqiqiy oʻzgaruvchilarning kompleks qiymatli funksiyasidir.
Bir oʻlchamli fazodagi yakka spinsiz zarracha uchun, agar toʻlqin funksiyasi ehtimollik amplitudasi sifatida talqin qilinsa, toʻlqin funksiyasining kvadrat moduli, ijobiy haqiqiy son boʻlib
zarraning x da boʻlish ehtimoli zichligi sifatida talqin qilinadi. Yulduzcha murakkab qoʻshmasini bildiradi. Agar zarrachaning joylashuvi aniqlansa, uning joylashishini toʻlqin funksiyasidan aniqlash mumkin emas, lekin ehtimollik taqsimoti bilan tavsiflanadi.