Foydalanilgan adabiyotlar



Yüklə 38,98 Kb.
səhifə1/4
tarix17.12.2022
ölçüsü38,98 Kb.
#121291
  1   2   3   4
Kirish asosiy qism eyler tenglamalari


Mavzu: Eyler tenglamalari. Eyler integrallarining tadbiqlari. Ba’zi aniq intеgrallarni hisoblash.


Reja:

  1. KIRISH

  2. ASOSIY QISM

  1. Eyler tenglamalari

  2. Eyler integrallarining tadbiqlari

  3. Ba’zi aniq intеgrallarni hisoblash.

  1. XULOSA

  2. FOYDALANILGAN ADABIYOTLAR



I.KIRISH
Ma’lumki hayot harakatdan iborat, shuning uchun harakat bilan bog’liq bo’lgan masalalarni o’rganish va xal qilish katta ahamiyatga ega. Bundan tashqari ko’plab murakkab jarayonlarning matematik modellari differensial tenglamalar bilan ifodalanadi. Yuqorida keltirilgan fikrlar mavzuning dolzarbligini ko’rsatadi.
Involyutsiya xossasiga ega bo’lgan differensial tenglamalar haqida birinchi ish [24] adabiyotda ko’rsatilgan 1940 yilda Silberstein R. hamda I.Ya. Vinerning 1969 yilda e’lon qilingan “Дифференциальные уравнения с инволюциями” mavzusidagi maqolalaridir.
Xususiy hosilali differensial tenglamalar uchun aralash masalalarni Fur’ye usuli bilan yechishda yechimni ifodalovchi qator va bu qatorni differensiallash bilan hosil qilingan qatorlarni tekis yaqinlashishini ko’rsatishda masala shartida berilganlarga ko’proq talablar qo’yiladi.
Fur’ye usuli bilan topilgan yechimni ifodalovchi qator hamma vaqt ham tekis yaqinlashuvchi bo’lmasligi mumkinligini kuzatish mumkin. Bu holda qatorni ikki qismga ajratib olish taklifini fanga A.N.Krilov tomonidan kiritilgan bo’lib, quyida bu usul haqida qisqacha bayon qilingan.
Bunday kamchilikni to’ldirish uchun rus matematigi A.N.Krilov tomonidan ’’Fur’e qatorlari yaqinlashtirishning tezlashtirish usuli’’ deb nomlangan usulni qo’llash mumkin. Bu usulning mohiyati shundaki, tekshirilayotgan qator tarkibidan sekin yaqinlashuvchi, ammo yig’indisi oshkor ko’rinishda hisoblanishi mumkin bo’lgan qator ajratiladi va demak bu qatorninig silliqlik masalasi haqida bevosita fikr yuritish mumkin. Qatorning qolgan qismi esa tez yaqinlashuvchi bo’lib istalgancha hadlab differensiallash imkoniyatini beradi va hosil bo’lgan qatorlar tekis yaqinlashuvchi bo’ladi. Krilovning bu usuli B.A.Chernyatin tomonidan rivojlantirildi va issiqlik o’tkazuvchalik, to’lqin tebranishi va Shredinger tenglamalari bilan berilgan aralash masalalariga tadbiq qilindi.


Yüklə 38,98 Kb.

Dostları ilə paylaş:
  1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin