Mavzu: Boshlang’ich sinflarda perimetr va yuza o'lchov birliklarini o'rgatish metodikasi



Yüklə 132,5 Kb.
səhifə4/6
tarix13.11.2022
ölçüsü132,5 Kb.
#119421
1   2   3   4   5   6
Mavzu Boshlang’ich sinflarda perimetr va yuza o\'lchov birliklar

Birinchidan, o‘quv materialini o‘zlashtirish darajasi tushunchasining umumiyligi va murakkabligi sababli o‘zlashtirish darajalari har birining mazmunini faqat sxematik tavsiflash mumkin.
Ikkinchidan, sanab o‘tilgan darajalarning har biri boshqa darajalarning
elementlarini o‘z ichiga oladi. Masalan, asliga tiklash darajasi berilgan materialni ma’lum chegaralarda (to‘la va chuqur bo‘lmasa ham) tushunishni taqozo etadi; materialni tushunish mazkur bilim va malakalarni hech bo‘lmaganda ancha cheklangan nostandart holatlar to‘plamiga ko‘chirish imkonini beradi.
Uchinchidan, bu darajalardan har birining mazmunini tavsiflash uchun standart va nostandart masalalar (holatlar) tushunchalaridan foydalanildi. Standart masalalar (holatlar) deyilganda bevosita yangi materialni o‘zlashtirish uchun yechiladigan tipik masalalar tushuniladi. Shu sababli “standart masala” atamasi biror masalaga nisbatan, bunday tipdagi masalalar yangi mavzuni o‘rganishda yechilgan-yechilmaganligini bog‘liq ravishda qo‘llanishi mumkin. Yangi to‘plangan bilimlarni rivojlantirishni talab etadigan yangi turdagi masala nostandart masala deb ataladi.
Mazkur tipdagi masalalardan ko‘plab yechish, ularning yechish usulini o‘zlashtirish bo‘yicha maqsadga yo‘naltirilgan ish olib borish nostandart masalani standart masalaga o‘tkazadi. Shu sababli biror o‘quvchi, biror sinf uchun ko‘chirish darajasiga mos keladigan topshiriqlar, agar mazkur masalalar ular ustida ma’lum ish olib borilganidan so‘ng standart masalaga aylangan bo‘lsa, boshqa sinf va o‘quvchi uchun o‘zlashtirishning quyiroq darajasiga mos kelishi mumkin. Shu sababli, o‘quv materialini o‘zlashtirishni tekshirish uchun beriladigan topshiriqlar turli o‘qituvchilar o‘qitadigan sinflar uchun farq qilishi mumkin.
Ushbu masala uchun ko‘paytirish amalidan foydalanib ifoda tuzing: “Darakchi” gazetasining narxi 125 so‘m. Gazetaning bir haftada chiqadigan sonlari qancha so‘m turadi (gazeta dushanba kuni chiqmaydi)?
Mazkur topshiriq standartlaridan farq qiladi. Uni standart ko‘rinishga keltirish uchun o‘quvchilar ma’lum tipdagi masalani yechishlari zarur.
Qo‘shishga doir misollarni ko‘paytirish amali bo‘lgan misollar bilan almashtiring:
2 + 2 + 2 + 2 + 3; 2 + 3 + 3 + 2.
Ushbu masala uchun ko‘paytirish amalidan foydalaniladigan topshiriq yozing: “Xalq so‘zi” gazetasi 100 so‘m yoki 125 so‘m turadi. Agar haftaning dushanba kunidan tashqari gazetaning narxi 150 so‘m bo‘lsa, bu gazetaning bir haftada bahosi qancha turadi?
Bu topshiriqlar ham ilgaridan ma’lum bo‘lgan masalalarni yechish yo‘li bilan standart masalalarga keltiriladi: o‘quvchilar ikkitadan ortiq qo‘shiluvchilarga ega bo‘lgan yig‘indilarga ko‘p marta duch kelganlar va qo‘shiluvchilarni guruhlashni biladilar (guruhlash “Yig‘indini yig‘indiga qo‘shish” mavzusini o‘rganishda standart masalaga aylangan).
Misollarni ko‘paytirish amali bo‘lgan misollarga aylantiring:
1) a + a + a + a; 2) a + b + b + a.
O‘quvchilar qo‘shiluvchilari o‘zgaruvchilar orqali ifodalangan yig‘indilar bilan tanishlar.
Bilim o‘zlashtirilishining mazkur darajasi uchun topshiriqlar keltirishni davom ettirish mumkin edi. Lekin to‘rt topshiriq bir-biridan murakkabligi bo‘yicha farq qilishini qayd etamiz, masalan, uchinchi topshiriq birinchi topshiriqdan murakkabroq.
Eng yuqori o‘zlashtirish darajasi uchun topshiriqlar tushunish darajasi kabi nostandart bo‘lishi lozim. Biroq ularni bajarish uchun ilgari olingan bilimlardan foydalanish yetarli emas. Ulardan ba’zi natijalarni mustaqil hosil qilish lozim. Bunday topshiriqlarni tuzish uchun quyidagilarga asoslanamiz: standart masala sonlar bilan ifodalangan qo‘shiluvchilardan iborat chekli yig‘indidir. Bunday masalani standart ko‘rinishga yo qo‘shiluvchilarni o‘quvchilarga noodatiy shaklda ifodalash hisobiga yoki qo‘shiluvchilar sonini noodatiy berish bilan yoki standart ifodani nostandart matnli masala yordamida berish bilan almashtirish mumkin.
“Ko‘paytirish” mavzusi bilan tanishishdan oldin, ular yig‘indilarning ikki turi bilan tanishganlar: ulardan birida qo‘shiluvchilar sonlar yoki harflar bilan ifodalanadi, boshqalarida esa sonlar yig‘indisi yoki ayirmasi bilan ifodalanadi. Yig‘indilarning bu turlarini o‘rganishdagi farq shundaki, 3 + 5 yig‘indida, masalan, 3 va 5 qo‘shiluvchilar deb atalar edi, (3 + 5) + (7 +2) yig‘indida esa (3 + 5) va (7 + 2) ifodalarga “qo‘shiluvchi” atamasi qo‘llanilmas edi.
Shunday qilib, “(3 + 5) + (7 + 2) yig‘indida qo‘shiluvchilarni ayting” topshirig‘i nostandart topshiriq bo‘ladi. Shu sababli quyida ta’riflangan topshiriqlar o‘quv materialini yuqoridagi to‘rt topshiriqqa nisbatan yuqoriroq o‘zlashtirish darajasiga mos keladi:

  1. qo‘shishga doir misolni ko‘paytirishga oid misolga almashtiring:

(3 + 5) + (3 + 5) + (3 + 5);

  1. qo‘shishga doir misolni ko`paytirishga doir misol bilan almashtiring:

(4 + 3) + (4 + 3) + (4 +3);

  1. bu misolni ko‘paytirishga doir misol bilan almashtiring:

(8 – 5) + (8 — 5) + (8 – 5).
e) qo‘shishga doir misol tuzib uni ko‘paytirishga doir misol bilan almashtiring.
Ko‘paytirish ta’rifidan foydalanish uchun nostandart holatning boshqa varianti qo‘shiluvchilar sonini belgilash hisobiga hosil qilinishi mumkin. Bunga ushbu topshiriq misol bo‘ladi: “2 + 2 + ... + 2” yig‘indida a ta qo‘shiluvchi bor. Qo‘shishga doir bu misolni ko‘paytirishga oid misol bilan almashtiring.
“Ko‘paytirish” mavzusini o‘rganishning birinchi ikki darsida o‘quvchilarning asosiy qismi yaxshi matematik tayyorgarlikka ega bo‘lgan va yangi materialni yuqori sur’at bilan o‘zlashtirayotgan sinf bilan ishlaydigan o‘qituvchi, darslik chegarasidan chetga chiqadigan mashqlar tizimini qarashi mumkin. Masalan, qo‘shishga doir misollarni ko‘paytirish amali bo‘lgan misollar bilan almashtiring: 2 + 2 + 2 + 2 + 3; a + a + a; a + b + b + a + a va shunga o‘xshash. Mazkur holda bular standart topshiriqlardir. Algebraik va geometrik mazmunli o‘quv materialni o‘zlashtirish darajasiga mos topshiriqlar keltiramiz.
2-sinf o‘quvchilariga “Noma’lum qo‘shiluvchini topish” mavzusini o‘rgatishdan keyin (x + 30 = 70 va 30 + x = 70 ko‘rinishdagi tenglamalar bilan tanishilganidan so‘ng) taklif etilishi mumkin bo‘lgan topshiriqlar tizimini qarab chiqamiz. Bu mavzu bo‘yicha standart topshiriqlar tizimiga ushbu turdagi mashqlar xosdir: “Masala bo‘yicha tenglama tuzing va uni yeching”, “...tenglamani yeching”.

    1. Masala bo‘yicha tenglama tuzing va uni yeching: “Karim bir nechta baliq tutdi, Mahmud esa 50 ta baliq tutdi. O‘quvchilar hammasi bo‘lib 90 ta baliq tutishdi. Karim nechta baliq tutgan?”.

    2. Tenglamani yeching: x + 60 = 80.

    3. x + 50 = 80 tenglama bo‘yicha masala tuzing. Uni yeching (o‘quvchilar uchun “50 + 30 ifoda bo‘yicha masala tuzing” topshirig‘i standart masaladir. “Noma’lum qo‘shiluvchini toping” mavzusini o‘rganishda hosil qilingan bilimlardan foydalanib, u 1-topshiriqda keltiriladi).

    4. 50 + x = 80 — 20 tenglamani yeching.

    5. Masala bo‘yicha tenglama tuzing va uni yeching: Go‘zalda 50 ta atirgul bor edi. U 30 ta gulni Malikaga berdi. Go‘zalda nechta atirgul qoldi? (Bu topshiriqning nostandartligi quyidagidan iborat: o‘quvchilar bu turdagi masalalarni ayirish amali bilan yechganlar: 50 — 30. Ular tuzishlari lozim bo‘lgan tenglama esa 30 + x = 50 ko‘rinishda, chunki o‘quvchilar tenglamalarning boshqa hech qanday turlari bilan tanish emaslar. Shunday qilib, oldingi bilimlar topshiriqni bajarish uchun bevosita foydalanilishi mumkin emas. Ularni jiddiy ravishda qayta anglash lozim).

    6. 3 — 2 + x = 5 tenglamani yeching. O‘quvchilar 3 — 2 va 3 — 2 + x ko‘rinishdagi ifodalar bilan tanishlar, noma’lum qo‘shiluvchi, shu bilan qo‘shiluvchilar faqat ikkita bo‘lgan tenglamalarni yechishni biladilar. Mazkur tenglama dastlabki almashtirishlarni talab etadi, chunki ular uchun ilgari olingan bilimlarni bevosita qo‘llanish yetarli emas. O‘quvchilar 3 — 2 yoki 1 bo‘lgan yig‘indini ko‘rishlari lozim.

4-sinf o‘quvchilariga to‘g‘ri to‘rtburchak yuzini hisoblash formulasini o‘rganilgandan so‘ng taklif qilinishi mumkin bo‘lgan topshiriqlar tizimini ko‘rib chiqaylik. To‘g‘ri to‘rtburchakning bo‘yi va eni sonli yoki harfiy qiymatlar bilan berilgan va uning yuzini topish kerak bo‘lgan masalalar standart masalalar bo‘ladi. 4- sinfda standart topshiriq sifatida bir necha sodda standart masalalarni o‘z ichiga oladigan murakkab masala xizmat qilishi mumkinligini qayd etamiz.
Keltirilayotgan tavsiyalarni boshlang‘ich sinf matematika darslarida qo‘llanilsa maqsadga muvofiq bo‘ladi.
O‘quv qo‘llanma bo‘lajak boshlang‘ich sinf o‘qituvchilarining boshlang‘ich sinf o‘quvchilariga matematikadan bilim berishda yuzaga keladigan turli ijtimoiyiqtisodiy, bozor iqtisodiyotiga oid, o‘quvchilarni ijodiy faollikka yetaklaydigan, metodik vazifalarini mustaqil hal etish uchun tayyorgarlik saviyalarini oshirishni nazarda tutadi. Qo‘llanma talabalarning matematikadan boshlang‘ich ta’lim metodikasi bo‘yicha asosiy ishlarining tavsifi va namunalarini o‘z ichiga oladi. Har bir mashg‘ulotning mavzui, unga tayyorlanish jarayonida o‘quvchi bajarishi lozim bo‘lgan topshiriqlar, uslubiy ko‘rsatmalar va eng muhim nazariy manbalar keltirilgan. Qo‘llanma o‘quvchilarning mashg‘ulotlarga tayyorlanishida foydalanishlari va ularning mustaqil ishlarini tashkil etish uchun mo‘ljallangan. Qo‘llanmada o‘quvchilar uchun ko‘p o‘yinlar va ulardan foydalanish bo‘yicha metodik tavsiyalar, yangi pedagogik texnologiya yutuqlaridan foydalanilgan holda milliylashtirilgan materiallarni amaliyotga tatbiq etish masalalari keng yoritilgan.

Yüklə 132,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin