Mavzu: Kommivoyajer masalasi algoritmlarini o'rganish, chuqurlik va eni bo'yicha aylanib o'tuvchi graflar, kommivoyajer masalasini echish



Yüklə 11,67 Kb.
səhifə3/5
tarix02.06.2023
ölçüsü11,67 Kb.
#127599
1   2   3   4   5
Mavzu Kommivoyajer masalasi algoritmlarini o\'rganish, chuqurlik

Djek – kompyuterlar sotish bo’yicha agent (kommivoyajer), uning qaramog’ida 20 ta shahar bor. ishlayotgan kompaniya yo’l harajatlarining 50% ni to’laydi. Djek uning qaramog’ida bo’lgan har ikki shahar orasida yo’l harajatini hisoblab chiqqan. Masala yo’l harajatlarini kamaytirishdan iborat. Biz Djekga yo’l harajatlarini kamaytirishga yordam berishimiz kerak. Djekning marshruti o’zi yashagan shahardan boshlanib, qolgan hamma shaharlarni bir martadan o’tib, yana o’z shahriga qaytib kelishi kerak. Demak, biz tuzayotgan ruyhatda har bir shahar faqat bir marta uchrashi kerak, Lekin Djek yashagan shahar ikki marta uchrab, ruyhatning birinchi va oxirgi elementlari bo’ladi. Undan tashqari, ruyhatdagi shaharlar tartibi Djekning marshrutini belgilaydi. Ruyhatdagi ikkita oxirgi shaharlar orasidagi yo’l narxi – bu butun marshrut narxi deb hisoblanadi. Demak, agar biz Djekga eng kichik narxdagi ruyhatni tuzib bersak, masalani yechgan bo’lamiz.


  • Djek – kompyuterlar sotish bo’yicha agent (kommivoyajer), uning qaramog’ida 20 ta shahar bor. ishlayotgan kompaniya yo’l harajatlarining 50% ni to’laydi. Djek uning qaramog’ida bo’lgan har ikki shahar orasida yo’l harajatini hisoblab chiqqan. Masala yo’l harajatlarini kamaytirishdan iborat. Biz Djekga yo’l harajatlarini kamaytirishga yordam berishimiz kerak. Djekning marshruti o’zi yashagan shahardan boshlanib, qolgan hamma shaharlarni bir martadan o’tib, yana o’z shahriga qaytib kelishi kerak. Demak, biz tuzayotgan ruyhatda har bir shahar faqat bir marta uchrashi kerak, Lekin Djek yashagan shahar ikki marta uchrab, ruyhatning birinchi va oxirgi elementlari bo’ladi. Undan tashqari, ruyhatdagi shaharlar tartibi Djekning marshrutini belgilaydi. Ruyhatdagi ikkita oxirgi shaharlar orasidagi yo’l narxi – bu butun marshrut narxi deb hisoblanadi. Demak, agar biz Djekga eng kichik narxdagi ruyhatni tuzib bersak, masalani yechgan bo’lamiz.

Evristika yoki evristik algoritm – algoritm deb ta’riflanishi uchun quyidagi hususiyatlarga ega bo’lishi kerak:


  • Evristika yoki evristik algoritm – algoritm deb ta’riflanishi uchun quyidagi hususiyatlarga ega bo’lishi kerak:

  • U odatda shartli ravishda optimal bo’lmasa ham, yahshi yechimlarni topish kerak.Uni ixtiyoriy ma’lum aniq algoritmdan ko’ra, amalga oshirish tezroq va soddaroq bo’lishi kerak. Odatda yahshi algoritmlar evristik bo’lib chiqadi. Faraz qilaylik, biz tez ishlaydigan va barcha test topshiriqlariga javob beradigan algoritmni tuzdik, lekin uning to’g’riligini isbotlab bilmaymiz. Shunday isbot berilmaguncha, algoritm evristik deb tushuniladi.Misol tariqasida quyidagi algoritmni ko’rib chiqamiz:

  • GTS algoritmi: (kommivoyajer). N ta shaharlar va C narxlar matrisasi berilgan kommivoyajer masalasi uchun U shahardan boshlab COST narxli TOUR yaqinlashgan yechimni topish kerak. Qadam 0: [Insiallashtirish] TOUR:=0; COST:=0; V:=U; Qadam 1: [Hama shaharlarni o’tish] For k:=1 to N-1 do qadam 2; Qadam 2: [Keyingi vektorga o’tish]Faraz qilaylik, (V,W) – V shahardan W ga olib borayotgan eng kichik narxli vektor. Unda:

  • TOUR:=TOUR+(V,W); COST:=COST+C(V,W);

  • V:=W; Qadam 3: [Marshrutni tugatish] TOUR:=TOUR+(V,1);COST:=COST+C(V,1);Marshrutni tasvirlash uchun biz matematikada graf yoki tur deb nomlanayotgan chizmadan foydalanamiz. Umuman tur – bu nuqtalar va bir nechta yoki barcha ikki nuqtalarni bog’layotgan chiziqlar to’plami, undan tashqari chiziqlar ustida qiymatlar ham berilishi mumkin.

  • Masalani soddalashtirish uchun beshta shahar uchun yechim topamiz. Rasm. 1a – narxlar matrisasi. Rasm. 1b – turli model ko’rsatilgan.

Yüklə 11,67 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin