Implikatsiya amali. Navbatdagi amalino’rganish maqsadida quyidagi misolni qarab chiqamiz.
1.1.6-misol. Quyidagi mulohazalarni ko’raylik:
“ Agar 2*5=10 bo’lsa, u holda 6*7=42 bo’ladi”
“ Agar 30 soni 5ga qoldiqsiz bo’linsa, u holda 5 juft son bo’ladi”.
“Agar 3=5 bo’lsa, u holda 15+2=17 bo’ladi”.
“Agar 4*3=13 bo’lsa, u holda 9+3=13 bo’ladi”.
Bular murakkab mulohazalar bo’lib, ularning har biri ikkita elementar mulohazadan “agar…. bo’lsa, u holda…bo’ladi” ko’rinishdagi qolip (andoza,bog’lovchilar) asosida tuzilgan.
1.1.5-ta’rif.Berilgan x va y elementar mulohazalarning birinchisi chin va ikkinchisi yolg’on bo’lgandagina yo qiymat qabul qilib, qolgan hollarda esa, ch qiymat qabul qiluvchi murakkab mulohaza x va y mulohazalarning implikatsiyasi deb ataladi.”
x
y
Yo
yo
Ch
Yo
Ch
Ch
Ch
Yo
Yo
Ch
Ch
ch
“Berilgan mulohazalarning implikatsiyasi bu mulohazalarga implikatsiya amalini qo’llab hosil qilindi” deb aytish mumkin. Implikatsiya amali 1.1.2-jadvalda ifodalangan binar amaldir. Implikatsiya amalini belgilashda “ ( “ belgidan foydalaniladi. Shuni ta’kidlash kerakki implikatsiya amali bajarilganda berilgan elementar mulohazalarning o’rni, ya’ni ulardan qaysi birinchi va qaysi ikkinchi bo’lishi muhimdir. Berilgan x va y elementar mulohazaning implikatsiyasi “ “kabi yoziladi va “ agar x bo’lsa, u holda y (bo’ladi)” deb o’qiladi. implikatsiyani “ x dan y ga implikatsiya “ deb ham yuritish mumkin. So’zlashuv tilida implikatsiyani “ x bo’lsa, y bo’ladi”, “ agar x bo’lsa, u vaqtda y bo’ladi”, “ x dan y hosil bo’ladi”, “ x dan y kelib chiqadi”, “y agar x bo’lsa”, “ x y uchun yetarlishart” va boshqacha o’qish holatlari ham uchraydi. x va y elementar mulohazaning implikatsiyasi uchun x mulohaza asos (shart, gipoteza, dalil), y mulohaza esa x asosning oqibati (natijasi, xulosasi) deb ataladi. x va y mulohazalarning impliktsiyasi uchun chinlik jadvali 1.1.5-jadval bo’ladi (1.1.2-jadvalning x,y va ustunlariga qarang). (1.1.5-jadval) Implikatsiya uchun chinlik jadvalining dastlabki ikkita satri yolg’on asosda yolg’on xulosa ham, chin xulosa ham kelib chiqishi mumkinligini anglatadi. Boshqacha qilib aytganda ,”yolg’ondan har bir narsani kutish mumkin”.
Implikatsiya uchun chinlik jadvalidan ko’rinadiki, 1.1.2-misoldagi mulohazalarning ikkinchisi yolg’on bo’lib, qolganlari chindir.
Ekvivalensiya amali.Matematik mantiqda ko’pchilik murakkab mulohazalar berilgan elementar mulohazalardan “…zarur va yetarlidir”, “….zarur va kifoyadir”, “faqat va faqat …”, “ shunda va faqat shundagina, qachonki…”, “…bajarilishi yetarli va zarurdir” kabi qolip (andoza, bog’lovchilar) vositasida tuziladi.