Muavr-Laplasning lokal va integral teoremalari


Takrorlash uchun savollar



Yüklə 221,86 Kb.
səhifə2/2
tarix22.04.2022
ölçüsü221,86 Kb.
#115449
1   2
muavr laplasning lokal va integral t

Takrorlash uchun savollar.

  1. Lokal teoremaga zaruriyatni tushuntirib bering.

  2. Laplasning lokal teoremasini keltiring.

  3. Laplasning lokal teoremasi isbotini mustaqil bajaring.

  4. Integral teoremaga zaruriyatni tushuntirib bering.

  5. Laplasning integral teoremasini keltiring.

  6. Ingtegral teoremaning isbotini mustakil bajaring.

  7. hodisa ehtimolligi uchun formula keltirib chiqaring.

Testlar.

1. Lokal teorema ifodasidagi

A) , B) C) , D).

2. Lokal teorema isbotida foydalaniladi:

A) to’la ehtimol formulasi B) ko’paytirish teoremasi

C) Stirling formulasi D) geometrik ehtimol ta`rifi

3. Lokal teorema isbotida foydalaniladi

A) ko’paytirish teoremasi

B) Bernulli formulasi C) Beyes formulalari

D) geometrik ehtimol ta`rifi

4.Lokal teorema isbotida foydalaniladi:

A) Bernulli formusi B) Sirling formulasi

C) to’la ehtimol formulasi D) A, B

5. Lokal teorema isbotida foydalaniladi

A) Bernulli formulasi B) Stirling formulasi

C) Logarifmik funksiya yoyilmasi D) A,B,S

7. Stirling formulasi yordamida topiladi

A) gacha bo’lgan butun sonlar soni B) dan kichik tub sonlar soni

C) foktarialning taqribiy qiymati D) dan kichik toq sonlar soni

8. Integral teorema yordamida hodisaning

A) aniq marta

B) aniq marta

C)shartli ehtimoli

D) martadan martagacha ruy berish ehtimoli topiladi

9. Integral teoremaning isbotida foydalaniladi:

A) Lokal teoremadan B) shartli ehtimol formulasidan

C) Beyes formulalaridan D) ehtimolikning stematik ta`rifidan

10. Laplas funksiyasi:

A) juft B) toq

C) manfiy qiymatli D) indikator qiymati

11. Lokal teorema yordamida masalalar yechishda foydalaniladigan funksiya

A) toq B) o’suvchi

C) juft D) faqat 0,1 dan kichik qiymatlarni kabul qiladi.

12. Laplas funksiyasining bo’ladigan qiymati:



A) 1 B) 0,6 C) 0 D) 0,5 deb olinadi.
Yüklə 221,86 Kb.

Dostları ilə paylaş:
1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin