§ 256. Kompleks sonlarning trigonometrik shakli
Kompleks son bo'lsin a + bi vektorga mos keladi O.A> koordinatalari bilan ( a, b ) (332-rasmga qarang).
Ushbu vektor uzunligini quyidagi bilan belgilang r , va uning o'q bilan qilgan burchagi X , bo'ylab φ . Sinus va kosinusning ta'rifi bo'yicha:
a / r = cos φ , b / r = gunoh φ .
Shunung uchun lekin = r cos φ , b = r gunoh φ . Ammo bu holda kompleks son a + bi quyidagicha yozilishi mumkin:
a + bi = r cos φ + ir gunoh φ = r (chunki φ + i gunoh φ ).
Ma'lumki, har qanday vektor uzunligining kvadrati uning koordinatalari kvadratlari yig'indisiga teng. Shunung uchun r 2 = a 2 + b 2, qaerdan r = √a 2 + b 2
Shunday qilib, har qanday murakkab son a + bi sifatida ifodalanishi mumkin :
a + bi = r (chunki φ + i gunoh φ ), (1)
qayerda r = √a 2 + b 2 va burchak φ sharti asosida aniqlanadi:
Murakkab sonlarni yozishning bunday shakli deyiladi trigonometrik.
Raqam r formulada (1) deyiladi modul, va burchak φ - dalil, kompleks son a + bi .
Agar murakkab raqam bo'lsa a + bi nolga teng emas, u holda uning moduli musbat; agar a + bi = 0, keyin a = b = 0 va keyin r = 0.
Har qanday kompleks sonning moduli yagona aniqlanadi.
Agar murakkab raqam bo'lsa a + bi nolga teng bo'lmasa, uning argumenti (2) formulalar bilan aniqlanadi. albatta 2 ga karrali burchakka qadar π . Agar a + bi = 0, keyin a = b = 0. Bu holda r = 0. (1) formuladan buni argument sifatida tushunish oson φ bu holda siz har qanday burchakni tanlashingiz mumkin: oxir-oqibat, har qanday uchun φ
0 (cos φ + i gunoh φ ) = 0.
Shuning uchun nol argument aniqlanmagan.
Kompleks sonlar moduli r ba'zan | z |, va arg argumenti z . Kompleks sonlarni trigonometrik shaklda tasvirlashga bir nechta misollarni ko‘rib chiqamiz.
Misol. bitta. 1 + i .
Keling, modulni topamiz r va argument φ bu raqam.
r = √ 1 2 + 1 2 = √ 2 .
Shuning uchun gunoh φ = 1 / √ 2 , cos φ = 1 / √ 2 , qaerdan φ = π / 4 + 2nπ .
Shunday qilib,
1 + i = √ 2 ,
qayerda P - har qanday butun son. Odatda, murakkab son argumentining cheksiz qiymatlari to'plamidan 0 dan 2 gacha bo'lgan biri tanlanadi. π . Bunday holda, bu qiymat π / 4 . Shunung uchun
1 + i = √ 2 (cos π / 4 + i gunoh π / 4)
2-misol Kompleks sonni trigonometrik shaklda yozing √ 3 - i . Bizda ... bor:
r = √ 3+1 = 2 cos φ = √ 3/2, gunoh φ = - 1 / 2
Shuning uchun, 2 ga bo'linadigan burchakka qadar π , φ = 11 / 6 π ; Binobarin,
√ 3 - i = 2(cos 11/6 π + i gunoh 11/6 π ).
3-misol Kompleks sonni trigonometrik shaklda yozing men.
murakkab son i vektorga mos keladi O.A> o'qning A nuqtasida tugaydi da ordinatasi 1 bilan (333-rasm). Bunday vektorning uzunligi 1 ga, abscissa o'qi bilan hosil qiladigan burchakka teng. π / 2. Shunung uchun
i = cos π / 2 + i gunoh π / 2 .
4-misol Kompleks 3 raqamini trigonometrik shaklda yozing.
Kompleks 3 raqami vektorga mos keladi O.A > X abscissa 3 (334-rasm).
Bunday vektorning uzunligi 3 ga, x o'qi bilan qilgan burchagi esa 0 ga teng
3 = 3 (cos 0 + i gunoh 0),
5-misol-5 kompleks sonini trigonometrik shaklda yozing.
-5 kompleks soni vektorga mos keladi O.A> eksa nuqtasida tugaydi X abscissa bilan -5 (335-rasm). Bunday vektorning uzunligi 5 ga, x o'qi bilan qilgan burchagi esa π . Shunung uchun
5 = 5 (kos π + i gunoh π ).