Objavljeni radovi (ILI radovi u stampi)



Yüklə 68,55 Kb.
tarix26.10.2017
ölçüsü68,55 Kb.
#13322

CITIRANOST

(bez autocitata)
Ukupno citata: 132

h – indeks: 6

i10- indeks: 5



Redni broj rada

Naslov rada i citati

Broj citata

1

N.D. Milošević, G.S. Vuković, D.Z. Pavičić, K.D. Maglić, Thermal Properties of Tantalum Between 300 and 2300 K, Int. J. Thermophys., Vol. 20, No. 4, 1129-1136, 1999.

  • Kraftmakher Y., Modulation Calorimetry and Related Techniques, Phys. Reports – Rev. Section Phys. Lett., Vol. 356, Iss. 1-2, p. 1-117, 2002.

  • Kraftmakher Y., Modulation Calorimetry: Theory and Applications (Springer-Verlag Berlin Heidelberg New York) 2004.

  • Chikh H., Afir A., Pialoux A., High temperature X-ray diffraction study of the phases in the tantalum - Carbon - Oxygen system, Annales de Chimie: Sciences des Matériaux, Vol. 33, No. 1, p. 27-45, 2008.

  • Garnier J.P., Maye J.P., Saillard J., Thévenot G., Kadjo A., Martemianov S., A new transient hot-wire instrument for measuring the thermal conductivity of electrically conducting and highly corrosive liquids using small samples, Int J Thermophys., Vol. 29, No. 2, p. 468-482, 2008.

  • Kadjo A. J.-J., Garnier J.P., Maye J.P., Martemianov S., A new transient two-wire method for measuring the thermal diffusivity of electrically conducting and highly corrosive liquids using small samples, Int. J. Thermophys., Vol. 29, No. 4, p. 1267-1277, 2008.

  • Kadjo A. J.-J., Maye J.-P., Saillard J., Thévenot G., Garnier J.-P., and Martemianov S., Measurement of Thermal Conductivity and Diffusivity of Electrically Conducting and Highly Corrosive Liquids from Small Samples with a New Transient Hot-Wire Instrument, In Proceedings of 5th European Thermal-Sciences Conference, Editors: G.G.M. Stoffels, T.H. van der Meer and A.A. van Steenhoven, ISBN 978-90-386-1274-4, Eindhoven, 2008.

  • Warner D.J., Advanced Cathodes for Next Generation Electric Propulsion Technology, Master's thesis, Air Force Institute of Techology Wright-Patterson, School of Engineering and Management, March 2008.

  • Zhukova M., Focal spot size of intense heavy ion beam - post mortem analysis of irradiated metallic foils, http://www.itep.ru/rus/FRRC/meet2008/nov/Posters/zhukova.pdf, 2008.

  • Liu Z.L., Cai L.C., Chen X.R., Wu Q., and Jing F.Q., Ab initio refinement of the thermal equation of state for bcc tantalum: The effect of bonding on anharmonicity, J. Phys. Condensed Matter, Vol. 21, No. 9, Art. no. 095408, 2009.

  • Grosser M., Schmid U., The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films, Thin Solid Films, Vol. 517, No. 16, p. 4493-4496, 2009.

  • Warner D.J., Branam R.D, Hargus Jr. W.A., Ignition and plume characteristics of low-current cerium and lanthanum hexaboride hollow cathodes, J. Propul. Power., Vol. 26, No. 1, p. 130-1344, 2010.

  • Wu J., Zhao X., Song Y., and Wu, G., First-principles high-pressure elastic and thermodynamic properties of tantalum, International Journal of Modern Physics B, Vol. 25, No. 10, p. 1393-1407, 2011.

  • O'Rourke B.E., Hayashizaki N., Kinomura A., Kuroda R., Minehara E.J., Ohdaira T., Oshima N., and Suzuki R., Simulations of slow positron production using a low-energy electron accelerator, Review of Scientific Instruments, Vol. 82, No. 6, 2011.

  • Kim C.S., Hyun C.Y., Jhang K.Y., Creep characterization of superalloy In-738 using ultrasonic nonlinearity measurement, International Journal of Modern Physics B, Vol. 25, Iss. 10, p. 1385-1407, 2011.

  • Wang Y., Sefiane K., Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating, Int. J. Heat Mass Transfer, Vol. 55, No. 9-10, p. 2235-2243, 2012.

  • Wessels V., Gangopadhyay A.K., Sahu K.K., Hyers R.W., Canepari S.M., Rogers J.R., Kramer M.J., Goldman A.I., Robinson D., Lee J.W., Morris J.R., Kelton K.F., Reply to "Comment on 'Rapid chemical and topological ordering in supercooled liquid Cu 46Zr 54"', Phys. Rev. B - Condensed Matter and Materials Physics, Vol. 85, No. 6, 2012.

  • Wang X., Zhang T., Shen B., Zhang J., Sun F., Simulation and experimental research on the substrate temperature distribution in HFCVD diamond film growth on the inner hole surface, Surface and Coatings Technology, Vol. 219, p. 109-118, 2013.

  • Bodryakov V. Yu., Heat capacity of solid tantalum: Self-consistent calculation, High Temperature, Vol. 51, Iss. 2, p. 206-214, 2013.

  • Wang X., Zhang J., Zhang T., Shen B., Sun F., Simulation optimization of the heat transfer conditions in hfcvd diamond film growth inside holes, Surf. Rev. Lett., Vol. 20, Iss. 3-4, Art. No. 1350031, 2013.

  • Wang X., Zhang T., Shen B., Zhang J., Sun F., Simulation and experimental research on the substrate temperature distribution in HFCVD diamond film growth on the inner hole surface, Surface and Coatings Technology, Vol. 219, p. 109-118, 2013.

  • Rimkus N.W., Jankowski T.A., Jurney J.D., Peach W.D., and Stout S.A., Electromagnetic Stirring of Plutonium Metal Part I: Theoretical Calculations and System Design (LA-UR-13-23071), in PRICM: 8 Pacific Rim International Congress on Advanced Materials and Processing (ed F. Marquis), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9781118792148.ch338, 2013.

  • Shen B., Song B., Cheng L., Lei X., Sun F., Optimization on the HFCVD setup for the mass-production of diamond-coated micro-tools based on the FVM temperature simulation, Surface and Coatings Technology, Vol. 253, p. 123-131, August 2014.

  • Golge S., Vlahovic B., Wojtsekhowski B., High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility, J. Appl. Phys., Vol. 115, No. 23, art. no. 234907, 2014.

  • Shahshenas S. and Amrollahi R., Simulation and design of pre-ionization systems for Alborz tokamak, J. Plasma Phys., doi:10.1017/S0022377814000804, 2014.




24

2

N.D. Milošević, M.Raynaud, Analytical Solution of Transient Heat Conduction in a Two-Layer Anisotropic Cylindrical Slab Excited Superficially by a Short Laser Pulse, Int. J. Heat Mass Transfer, Vol. 47, No. 8-9, p. 1627-1641, 2004.

  • X. Lu, P. Tervola, M. Viljanen, Transient analytical solution to heat conduction in composite circular cylinder, Int. J. Heat Mass Transfer, Vol. 49, No. 1-2, p. 341-348, 2006.

  • V. Karagodsky, A. Mizrahi, L. Schächter, Thermal scaling laws of the optical Bragg acceleration structure, Phys. Rev. ST Accel. Beams, Vol. 9, No. 5, Art. No. 051301 (10 pages), 2006.

  • Xu X.S., Zhou Z.H., Symplectic method in two dimensional thermal conduction under steady state, Journal of Thermal Science and Technology, Vol. 5, No. 4, p. 288-294, 2006.

  • Klann S., Anisotropic Heat Conduction in Composite Materials, http://www.egr.msu.edu/~raguin/ME812/ FinalProjects/Klann_FinalProject.htm, 2007.

  • Petry V.J., Desenvolvimento de um modelo para a transferência de calor e massa em meios granulares, PhD. thesis, Instituto de Matemática, Universidade Federal do Rio Grande do Sul, http://hdl.handle.net/10183/10426, 2007.

  • Fernandes A.P, Sousa P.F.B., Borges V.L, Guimaraes G., Use of 3D-transient analytical solution based on Green's function to reduce computational time in inverse heat conduction problems, Appl. Math. Model., Vol. 34, No. 12, p. 4040-4049, 2010.

  • Goldstein R.J., Ibele W.E., Patankar S.V., Simon T.W., Kuehn T.H., Strykowski P.J., Tamma K.K., Heberlein J.V.R., Davidson J.H., Bischof J., Kulacki F.A., Kortshagen U., Garrick S., Srinivasan V., Ghosh K. and Mittal R., Heat transfer-A review of 2004 literature, Int J Heat Mass Transfer, Vol. 53, No. 21-22, p. 4343-4396, 2010.

  • Yilbas B.S., Al-Dweik A.Y., Closed form solutions for thermal stress field due to non-equilibrium heating during laser short-pulse irradiation, Physica B: Condensed Matter, Vol. 407, No. 12, p. 2169-2175, 2012.

  • Li M. and Lai A.C.K., Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers, Applied Energy, Vol. 96, p. 451-458, 2012.

  • D'Antona G., Seifnaraghi N., Temperature distribution reconstruction by eigenfunction interpolation of boundary measurement data, in Proceedings of 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, p. 1999-2004, 2012.

  • Wang H.M., Liu C.B., Analytical solution of two-dimensional transient heat conduction in fiber-reinforced cylindrical composites, Int. J. Thermal Sci., Vol. 69, p. 43-52, 2013.

  • D'Antona G., Seifnaraghi N., Temperature distribution reconstruction by eigenfunction interpolation of boundary measurement data, in Proceedings of 2014 IEEE Transactions on Instrumentation and Measurement, Vol. 63, Iss. 2, p. 334-342, 2014.

  • D'Antona G., Seifnaraghi N., Analysis of the Sensor Placement for Optimal Temperature Distribution Reconstruction, Measurement, Vol. 56, p. 58-69, October 2014.

  • Sethi U., Numerical inspection of crack in solid bar using conduction, B.Tech.Thesis, Department of Mechanical Engineering, National Institute Of Technology, Rourkela, India, 2014.

  • Torabi M., Zhang K., Yang G., Wang J., and Wu P., Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact, Energy, Vol. 78, p. 218-234, 2014.

  • Panda D.K., Raghav V., Bhoi R.K., Developing three dimensional transient thermal model for laser beam assisted heating and material removal of solids, International Journal of Machining and Machinability of Materials, Vol. 16, No. 3-4, p.259-284, 2014.

  • Wood B.D., Ostvar S., Series Solutions for Orthotropic Diffusion in a Cube, arXiv:1507.02212 [math.AP], 2015.

  • Yilbas B.S., Ali H., Closed form solution for temperature rise in a two layer assembly during laser step input pulse heating with the presence of convection cooling at surface, Lasers in Engineering, Vol. 32, No. 3-4, p. 241-261, 2015.

  • Shiaha Y.C., Chainga Y.-C., Matsumotob T., Analytical transformation of volume integral for the time-stepping BEM analysis of 2D transient heat conduction in anisotropic media, Engineering Analysis with Boundary Elements, Vol. 64, p. 101-110, 2016.




19

3

N.D. Milošević, M. Raynaud, K.D. Maglić, Estimation of thermal contact resistance between the materials of double-layer sample using the laser flash method, Inverse Problems in Engineering, Vol. 10, No. 1, 85-103, 2002.

  • Bai G., Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection, Ph.D. Thesis, VirginiaTech University, Materials Science and Engineering Department, 2005.

  • F. Albouchi, M. Fetoui, F. Rigollet, M. Sassi, S.-B. Nasrallah, Optimal design and measurement of the effective thermal conductivity of a powder using a crenel heating excitation, Int. J. Thermal Sci., Vol. 44, No. 11, p. 1090-1097, 2005.

  • J.G. Bai, Z.Z. Zhang, G.-Q. Lu, D.P.H. Hasselman, Measurement of solder/copper interfacial thermal resistance by the flash technique, Int. J. Thermophys., Vol. 26, No. 5, p. 1607-1615, 2005.

  • F. Albouchi, M. Fetoui, F. Mzali, F. Rigollet, M. Sassi, S.-B. Nasrallah, Thermal characterization of poorly conducting solids by the flash method, High Temp. High Press., Vol. 35/36, p. 633-647, 2003-2007.

  • F. Albouchi, F. Mzali, S.B. Nasrallah, Measurement of the effective thermal conductivity of powders using a three-layer structure, Journal of Porous Media, Vol. 10, No. 6, p. 537-549, 2007.

  • Chapelle E., Garnier B., and Bourouga B., Résistance thermique d’interface entre inclusion métallique et matrice dans les composites à matrice polymère, in Proceedings of Congres de SFT, Toulouse, Juin 2008, p. 143, 2008.

  • Fetoui M., Albouchi F., Rigollet F., Nasrallah S.B., Highly porous metal foams: Effective thermal conductivity measurement using a photothermal technique, Journal of Porous Media, Vol. 12, No. 10, p. 939-954, 2009.

  • Chapelle E., Garnier B., and Bourouga B., Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites, International Journal of Thermal Sciences, Vol. 48, No. 12, p. 2221-2227, 2009.

  • Colaço M.J., Alves C.J.S., Estimation of unknown contact resistance by means of reciprocity function approach, in Proc. of ECCOMAS 2012 (European Congress on Computational Methods in Applied Sciences and Engineering), E-Book Full Papers, pp. 5359-5374, 2012.

  • Moussa T., Garnier B., Peerhossaini H., Measurement and model on thermal properties of sintered diamond composites, Journal of Alloys and Compounds, Vol. 551, pp. 636-642, 2013.

  • Colaço M.J., Alves C.J.S., A fast non-intrusive method for estimating spatial thermal contact conductance by means of the reciprocity functional approach and the method of fundamental solutions, International Journal of Heat and Mass Transfer, Vol. 60, p. 653-663, 2013.

  • Madhusudana C.V., in Thermal Contact Conductance, Chapter 5: Experimental Aspects, Mechanical Engineering Series (Springer International Publishing), pp. 79-96, 2004.

  • Colaço M.J., Alves C.J.S. Orlande H.R.B., Transient non-intrusive method for estimating spatial thermal contact conductance by means of the reciprocity functional approach and the method of fundamental solutions, Inverse Problems in Science and Engineering, 2014. DOI: 10.1080/17415977.2014.933830

  • Abreu L.A.S., Alves C.J.S., Colaço M.J., Orlande H.R.B., A non-intrusive inverse problem technique for the identification of contact failures in double-layered composites, in Proceedings of the 15th IHTC, Kyoto, Japan, 2014, ISSN: 978-1-56700-421-2, DOI: 10.1615/IHTC15.inv.009532

  • de Lacerda C.R., Colaço M.J., Estimation of two-dimensional thermal contact conductances using the reciprocity functional approach, in Proceedings of the Congresso de Métodos Numéricos em Engenharia, June 29 – July 2, Lisbon, Portugal, 2015.



15

4

N.D. Milošević, M. Raynaud, K.D. Maglić, Simultaneous Estimation of Thermal Diffusivity and Thermal Contact Resistance of Thin Solid Films and Coatings Using the Two-Dimensional Flash Method, Int. J. Thermophys., Vol. 24, No. 3, 799-819, 2003.

  • L. Vozár, W. Hohenauer, Measurement of advanced materials using the flash method, in Proceedings of Thermophysics 2002 (Workshop of the Slovak Physical Society), Kočovce Slovakia, p. 34-39, 2002.

  • S.K. Kim, Y.J. Kim, Determination of apparent thickness of graphite coating in flash method, Thermochimica Acta, Vol. 468, Iss. 1-2, p. 6-9, 2008.

  • Turner K.K., Thermal-mechanical analysis of targets for high volume production of molybdenum-99 using low-enriched uranium, Master Thesis, University of Missouri, Mechanical and aerospace engineering department, 2009.

  • Bondarenko G.G., Yakunkin M.M., Spectral characteristics of the thermal properties of multilayer metallic materials, Russian Metallurgy (Metally)., Vol. 7, p. 606-611, 2010.

  • Bondarenko G.G., Yakunkin M.M., Effect of phase formation in the Mo-Ni system on the rate of change of the thermal conductivity of the interface, Russian Metallurgy (Metally), Vol. 9, p. 842-846, 2010.

  • Liang C., Effects of Coating Formulations on Thermal Properties of Coating Layers, Master Thesis, University of Toronto, Department of Chemical Engineering and Applied Chemistry, 2010.

  • Kim S.K., Apparatus and method for measuring thermal diffusivity using the flash method, US Patent 7,976,215, 2011.

  • Bondarenko G.G., Kokin M.A., Pyatykh D.S., Yakunkin M.M., Spectral analysis of thermowave oscillations in layered media, Inorganic Materials: Applied Research, Vol. 3, No. 2, p. 179-182, 2012.

  • Colaço M.J., Alves C.J.S., Estimation of unknown contact resistance by means of reciprocity function approach, in Proc. of ECCOMAS 2012 (European Congress on Computational Methods in Applied Sciences and Engineering), E-Book Full Papers, pp. 5359-5374, 2012.

  • Czél B., Woodbury K.A., Woolley J., Gróf G., Analysis of Parameter Estimation Possibilities of the Thermal Contact Resistance Using the Laser Flash Method with Two-Layer Specimens, Int. J. Thermophys., Vol. 34, Iss. 10, p. 1993-2008, 2013.

  • Colaço M.J., Alves C.J.S. Orlande H.R.B., Transient non-intrusive method for estimating spatial thermal contact conductance by means of the reciprocity functional approach and the method of fundamental solutions, Inverse Problems in Science and Engineering, 2014. DOI: 10.1080/17415977.2014.933830

  • Sethi U., Numerical inspection of crack in solid bar using conduction, B.Tech.Thesis, Department of Mechanical Engineering, National Institute Of Technology, Rourkela, India, 2014.

  • Pietrak K., Wiśniewski T.S., Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials, Journal of Power Technologies, Vol. 94, No. 4, p. 270-285, 2014.




13

5

N.D. Milošević, K.D. Maglić, Thermophysical Properties of Solid Phase Hafnium at High Temperatures, Int. J. Thermophys., Vol. 27, No. 2, 530-553, 2006.

  • Cagran C., Hüpf T., Wilthan B., and Pottlacher G., Selected thermophysical properties of Hf-3%Zr from 2200K to 3500K obtained by a fast pulse-heating technique, High Temp. - High Press., Vol. 37, No. 3, p. 205-219, 2008.

  • Kostanovskiy A.V., Kostanovskaya M.E., The nonequilibrium thermodynamic conditions and properties of materials, Measurement Techniques, Vol. 51, No. 11, p. 1204-1210, 2008.

  • Onufriev, S.V., Petukhov, V.A., Pesochin, V.R., Tarasov, V.D., The thermophysical properties of hafnium in the temperature range from 293 to 2000 K, High Temperature, Vol. 46, No. 2, p. 203-211, 2008.

  • Xin C., Dai J., Wang Q., He X., Thermal expansion coefficient and electrical resistivity of nonuniform temperature specimen, in Proceedings SPIE 7133, 5th International Symposium on Instrumentation Science and Technology, Shenyang, China, September 2008, doi:10.1117/12.810482, 2008.

  • Larentis S., Nardi F., Balatti S., Gilmer D.C., Ielmini D., Resistive switching by voltage-driven ion migration in bipolar RRAMPart II: Modeling, IEEE Transactions on Electron Devices, Vol. 59, No. 9, p. 2468-2475, 2012.

  • Balatti S., Larentis S., Gilmer D.C., Ielmini D., Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament, Advanced Materials, Vol. 25, No. 10, p. 1474-1478, 2013.

  • Vacíková P., Measurement of Spectral Emissivity of High-Temperature Coatings, Ph.D. Thesis, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic, 2013.

  • Yalon E., Riess I., Ritter D., Heat Dissipation in Resistive Switching Devices: Comparison of Thermal Simulations and Experimental Results, IEEE Transactions on Electron Devices, Vol. 61, Iss. 4, p. 1137-1144, 2014.

  • Arblaster J.W., Thermodynamic Properties of Hafnium, Journal of Phase Equilibria and Diffusion, Vol. 35, Iss. 4, p. 490-501, 2014.

  • Berco D., Tseng T.Y., A comprehensive study of bipolar operation in resistive switching memory devices, Journal of Computational Electronics, DOI: 10.1007/s10825-015-0736-7, 2015.

  • Berco D., Tseng T.Y., A numerical analysis of progressive and abrupt reset in conductive bridging RRAM, Journal of Computational Electronics, DOI: 10.1007/s10825-015-0744-7, 2015.




11

6

N.D. Milošević, K.D. Maglić, Thermophysical Properties of Solid Phase Zirconium at High Temperatures, Int. J. Thermophys., Vol. 27, No. 4, 1140-1159, 2006.

  • Ishikawa T., Paradis P.-F., Watanabe Y., and Koike N., Development of Non-Contact Electrical Resistivity Measurement Technique using an Electrostatic Levitator, Journal of the Japan Society of Microgravity Application, Vol. 25, No. 3, p. 399, 2008.

  • Xin C., Dai J., Wang Q., and He X., Thermal expansion coefficient and electrical resistivity of nonuniform temperature specimen, in Proc. of SPIE - The International Society for Optical Engineering 7133, art. no. 71333F, 2009.

  • Trego G., Comportement en fluage à haute température dans le domaine biphasé (+) de l’alliage M5®, Ph.D. Thesis, Paris Institute of Technology, École Nationale Supérieure des Mines de Paris, 2011.

  • Rustan G. E., Spyrison N. S., Kreyssig A., Prozorov R., and Goldman A.I., Noncontact Technique for Measuring the Electrical Resistivity and Magnetic Susceptibility of Electrostatically Levitated Materials, Review of Scientific Instruments, Vol. 83, No. 10, 2012.

  • Hrubiak R., Exploring Thermal and Mechanical Properties of Selected Transition Elements under Extreme Conditions: Experiments at High Pressures and High Temperatures, PhD Thesis, Florida International University, Paper 696, 2012.

  • Arblaster J.W., Thermodynamic properties of zirconium, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 43, p. 32-39, 2013.

  • Rustan G. E., Electrostatic levitation studies of supercooled liquids and metastable solid phases, Ph.D. Thesis, Graduate Theses and Dissertations, Paper 14290, Iowa State University, 2014.

  • Moore A.P., Beeler B., Deo C., Baskes M.I., Okuniewski M.A., Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics, Journal of Nuclear Materials, Vol. 467, p. 802-819, 2015.

  • Lohöfer G., Schneider S. Heat balance in levitation melting: Sample cooling by forced gas convection in Helium, High Temperatures - High Pressures, Vol. 44, No. 6, pp. 429-450, 2015.




9

7

G. Neuer, R. Brandt, K. Maglić, N. Milošević, G. Groboth, S. Rudtsch, Thermal diffusivity of the candidate standard reference material cordierite, High Temp.-High Press., Vol. 31, No. 5, 517-524, 1999.

  • E. Garcia, M.I. Osendi, P. Miranzo, Thermal Diffusivity of Porous Cordierite Ceramic Burners, J. Appl. Phys., Vol. 92, Iss. 5, p. 2346-2349, 2002.

  • Osendi M.I., Miranzo P., Thermal diffusivity of porous cordierite ceramic burners, J. Appl. Phys., Vol. 92, Iss. 5, p. 2346-2349, 2002.

  • Salmon D., Roebben G., Lamberty A., Brandt R., Certification of thermal conductivity and thermal diffusivity up to 1025 K of a glass-ceramic reference material BCR-724, Report EUR 21764 EN, Institute for Reference Materials and Measurements, Belgium, 2007.

  • Wulf R., Wärmeleitfähigkeit von hitzebeständigen und feuerfesten Dämmstoffen–Untersuchungen zu Ursachen für unterschiedliche Messergebnisse bei Verwendung verschiedener Messverfahren, PhD. thesis, Fakultät für Maschinenbau, Verfahrens– und Energietechnik, Technischen Universität Bergakademie Freiberg, http://d-nb.info/994116438/34, 2009.

  • Salmon D.R., Tye R.P., Pyroceram 9606, A certified ceramic reference material for high-temperature thermal transport properties: Part 1-material selection and characterization, Int. J. Thermophys., Vol. 31, No. 2 , p. 338-354, 2010.

  • Hiramitsua Y., Demura M., Xuc Y., Yoshidad M., Hirano T., Catalytic properties of pure Ni honeycomb catalysts for methane steam reforming, Applied Catalysis A, Vol. 507, p. 162-168, 2015.




6

8

N.D. Milošević, Determination of Transient Thermal Interface Resistance Between Two Bonded Metal Bodies Using the Laser Flash Method, Int. J. Thermophys., Vol. 29, No. 6, 2072-2087, 2008.

  • Russel C.D., Interfacial Thermal Conductivity Using Multiwall Carbon Nanotubes, Master Thesis, University of Kentucky, Department of Mechanical Engineering, 2010.

  • Dowden C., Weisenberger M.C., Craddock J., Petty K., Shields T., Owens A.T., Foedinger R., and Chung S., Epoxy-Filled Multiwall Carbon Nanotube Arrays for Thermal Interface Application, in Proceedings of Carbon Conference, Clemson University SC, July 2010, p. 400, 2010.

  • Zhang P., Xuan Y., Li Q., Development on thermal contact resistance, Huagong Xuebao/CIESC Journal, Vol. 63, No. 2, p. 335-349, 2012.

  • Zhang P., Xuan Y., Li Q., A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux, Experimental Thermal and Fluid Science, Vol. 54, p. 204-211, 2014.

  • Pietrak K., Wiśniewski T.S., Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials, Journal of Power Technologies, Vol. 94, No. 4, p. 270-285, 2014.




5

9

N.D. Milošević, K.D. Maglić, Thermophysical Properties of Solid Phase Titanium in a Wide Temperature Range, High Temp. High Press., Vol. 37, No. 3, p. 187-204, 2008.

  • Kononenko T. V., Nagovitsyn I. A., Chudinova G. K., and Mihailescu I. N., Clean, cold, and liquid-free laser transfer of biomaterials, Laser Physics, Vol. 21, No. 4, p. 823-829, 2011.

  • Hagqvist P., Sikström F., Christiansson A.-K., Emissivity Estimation for High Temperature Radiation Pyrometry on Ti-6Al-4V, Measurement, Vol. 46, No. 2, pp. 871-880, 2013.

  • Hagqvist P., Non-intrusive instrumentation and estimation-Applications for control of an additive manufacturing process, PhD Thesis, Chalmers University of Technology, Göteborg, Sweden, 2015.




3

10

K.D. Maglić, N.D. Milošević, Thermal Diffusivity Measurements of Thermographite, Int. J. Thermophys., Vol. 25, No. 1, p. 237-247, 2004.

  • Panas A.J., IR Support of Thermophysical Property Investigation–Study of Medical and Advanced Technology Materials, in Infrared Thermography, Dr. Raghu V Prakash (Ed.), ISBN: 978-953-51-0242-7 (InTech), pp. 65-90, 2012.

  • El Yagoubi J., Effet de l’endommagement mécanique sur les propriétés thermiques de composites à matrice éramique : approche multiéchelle, Thèse doctorale, École Doctorale des Sciences Physiques et de l’Ingénieur, Université Bordeaux, 2011.

  • Mehr M., Moore D.T., Esquivel-Elizondo J.R., Nino J.C., Mechanical and thermal properties of low temperature sintered silicon carbide using a preceramic polymer as binder, J. Mater. Sci., DOI 10.1007/s10853-015-9252-1, 2015.




3

11

N.D. Milošević, N.M. Stepanić, M.M. Babić, A relative humidity calibration from 5 to 45 °C in a mixed-flow humidity generator, Thermal Science, Vol. 16, No. 1, p. 193-205, 2012.

  • Ciou R., Study of Quality Inspection and Linear Calibration System for Capacitive Polymer Hygrometer, M. Thesis, Institute of Automation and Control of the National Taiwan University of Science and Technology, 2013.

  • Chen B., Kang P., Li J., He X., Liu A., and Hu S., Quantitative Moisture Measurement with a Cavity Ring-down Spectrometer using Telecom Diode Lasers, Chin. J. Chem. Phys., Vol. 28, p. 6-10, 2015.

  • Chen B., Wang J., Sun Yu.R., Kang P., Liu A., Li J., He X., Hu S., Broad-Range Detection of Water Vapor using Cavity Ring-down Spectrometer, Chin. J. Chem. Phys., Vol. 28, p. 440, 2015.




3

12

K.D. Maglić, N.D. Milošević, Participation in NPL Organized Round-Robin Thermal Diffusivity Intercomparison, Proceedings of Thermal Conductivity 24, Technomic Publishing Co., p. 673-682, 1997.

  • M. Srećković, Lj. Vulićević, V. Rajković, Ž. Tomić, Guide of Laser Damages on the Surface of Some Modern Materials, Technical Faculty, Čačak, 2004.

  • K.D. Maglić, Doprinos međunarodnim programima karakterizacije referentnih matrijala za termofizičke osobine, Zbornik radova Simpozijuma o merenjima i mernoj opremi, Beograd, Knjiga prva, str. 341-350, 1998.




2

13

N.D. Milošević, M. Raynaud, M. Laurent, K.D. Maglić, Thermal diffusivity measurements by the laser pulse method using Gauss estimation procedure with extended number of parameters, Thermal Science, Vol. 1-2, 71-85, 1999.

  • E.M. Đorđević, “Prilog određivanju termofizičkih osobina elektroprovodnih materijala”, Magistarski rad – Tehnološko-metalurški fakultet Univerziteta u Beogradu, Beograd, 2002.

  • Jeromen A., Grabec I., Govekar E., Laser pulse transient method for measuring the normal spectral emissivity of samples with arbitrary surface quality, Appl. Phys. A, Vol. 92, p. 945-949, 2008.




2

14

N.D. Milošević, “Doprinos povećanju tačnosti određivanja temperaturne provodnosti čvrstih materijala laserskom impulsnom metodom”, Magistarski rad - Elektrotehnički fakultet Univerziteta u Beogradu, Beograd, 1999.

  • E.M. Đorđević, “Prilog određivanju termofizičkih osobina elektroprovodnih materijala”, Magistarski rad – Tehnološko-metalurški fakultet Univerziteta u Beogradu, Beograd, 2002.

  • M. Srećković, Lj. Vulićević, V. Rajković, Ž. Tomić, Guide of Laser Damages on the Surface of Some Modern Materials, Technical Faculty, Čačak, 2004.




2

15

N.L. Perović, N.D. Milošević, Određivanje temperaturne provodnosti silicijuma laserskom impulsnom metodom uz neidealne početne i konturne uslove, Zbornik radova XLI Konferencije ETRAN, Knjiga IV, str. 438-441, Zlatibor, 3-6 juna 1997.

  • K.D. Maglić, Istraživanje u oblasti termofizike i metrologije temperature i toplote u laboratoriji za termotehniku i energetiku, Termoethnika, Vol. 26, No. 1-4, str. 119-139, 2000.

  • M. Srećković, Lj. Vulićević, V. Rajković, Ž. Tomić, Guide of Laser Damages on the Surface of Some Modern Materials, Technical Faculty, Čačak, 2004.




2

16

N.D. Milošević, I.D. Aleksić, Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range, Int. J. Mater. Res., Vol. 103, No. 6, p. 707-714, 2012.

  • Neira-Arce A., Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys, PhD. thesis, Materials Science and Engineering, Faculty of North Carolina State University, http://www.lib.ncsu.edu/resolver/1840.16/8202, 2012.

  • Menon T., Madhavan V., Infrared thermography of the chip-tool interface through transparent cutting tools, Transactions of the North American Manufacturing Research Institution of SME, Vol. 42, p. 586-593, 2014.




2

17

N.D. Milošević, Mesure de la diffusivité thermique et de la résistance de contact thermique des couches minces sur des substrats par la methode impulsionnelle, Thèse doctorale, INSA de Lyon, France, No d’ordre 2008 ISAL 0025, Juin 2008.

  • Rodiet C, Mesure de Température par Méthodes Multi-Spectrales et Caractérisation Thermique de Matériaux Anisotropes par Transformations Intégrales : « Aspects Théoriques et Expérimentaux », Ph.D. Thesis, Université de Lorraine, Institut National Polytechnique de Lorraine (INPL), 2014. (in French)

  • Ratovoson P.L., Caractérisation expérimentale d'un arc impulsionnel, Ph.D. Thesis, Université de Toulouse III Paul Sabatier, 2015. (in French)




2

18

N.D. Milošević, M.M. Babić, Thermophysical properties of solid phase palladium over a wide temperature range, International Journal of Materials Research, Vol. 104, No. 5, p. 462-470, 2013.

    • Arblaster J.W., Selected Electrical Resistivity Values for the Platinum Group of Metals Part I: Palladium and Platinum, Johnson Matthey Technol. Rev., Vol. 59, No. 3, p. 174–181, 2015.




1

19

N.D. Milošević, Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range, International Journal of Materials Research, Vol. 105, No. 6, p. 571-576, 2014.

    • Arblaster J.W., Selected Electrical Resistivity Values for the Platinum Group of Metals Part II: Rhodium and Iridium, Johnson Matthey Technol. Rev., Vol. 60, No. 1, p. 4–11, 2016.




1

20

N.D. Milošević, Application of the laser pulse method of measuring thermal diffusivity to thin alumina and silicon samples in a wide temperature range, Thermal Science, Vol. 14, No. 2, 417-423, 2010.

  • Corbin S.F., Turriff D.M., Thermal Diffusivity by The Laser Flash Technique, Characterization of Materials (John Wiley and Sons, ISBN: 9780471266969), DOI: 10.1002/0471266965, 2012.




1

21

N.D. Milošević, M. Raynaud, A Parameter Estimation Procedure in Thermal Diffusivity Measurements Using the Laser Flash Method, in Proceedings of Thermophysics 2002 (Workshop of the Slovak Physical Society) Kočovce Slovakia, p. 12-27, 2002.

  • Matteis P., Tenacità a frattura di acciai per stampi per materie plastiche: dipendenza dal ciclo produttivo, dal trattamento termico e dalla microstruttura, Ph.D. Thesis, Faculty of Engineering, Polytechnical School of Torino, 2005. (in Italian)




1

22

N. Milošević, Optimal parameterization in the measurements of the thermal diffusivity of thermal barrier coatings, Thermal Science, Vol. 11, No. 1, p. 137-156, 2007.

  • Pietrak K., Wiśniewski T.S., Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials, Journal of Power Technologies, Vol. 94, No. 4, p. 270-285, 2014.




1

23

N.D. Milošević, Uporedna analiza direktnog i inverznog pristupa za određivanje temperaturne provodnosti materijala kod laserske impulsne metode, Zbornik radova XLIII Konferencije ETRAN, Knjiga IV, str. 233-236, Zlatibor, 20-22. septembra 1999.

  • K.D. Maglić, Istraživanje u oblasti termofizike i metrologije temperature i toplote u laboratoriji za termotehniku i energetiku, Termoethnika, Vol. 26, No. 1-4, str. 119-139, 2000.




1

24

G.S. Vuković, N.D. Milošević, Estimacija vrednosti nepozanatih metroloških parametara u eksperimentalnim tehnikama za merenje toplotnih transportnih osobina, Zbornik radova Simpozijuma o merenjima i mernoj opremi, Beograd, Knjiga prva, str. 365-375, 1998.

  • K.D. Maglić, Istraživanje u oblasti termofizike i metrologije temperature i toplote u laboratoriji za termotehniku i energetiku, Termoethnika, Vol. 26, No. 1-4, str. 119-139, 2000.




1

25

N. Milošević, D. Inđin, V. Milanović, Z. Ikonić, “The electronics structure of Bragg-confined semiconductor structures in perpendicular magnetic field”, in Proceedings IEEE Conference of Microelectronics MIEL, Vol. 1, p. 149-152, Niš, Yugoslavia, 1997.

  • K.D. Maglić, Istraživanje u oblasti termofizike i metrologije temperature i toplote u laboratoriji za termotehniku i energetiku, Termoethnika, Vol. 26, No. 1-4, str. 119-139, 2000.




1

26

N.M. Stepanić, N.D. Milošević, Correction on the Influence of Thermal Contact Resistance in Thermal Conductivity Measurements Using the Guarded Hot Plate Method, Serbian Journal of Electrical Engineering, Vol. 6, No. 3, p. 481-490, 2009.

  • McGuinness T., Hemmingway P., Long M., Design and Development of a Low-Cost Divided-Bar Apparatus, Geotechnical Testing Journal, Vol. 37, Issue 2, 2014. (DOI: 10.1520/GTJ20130069)




1










UKUPNO:

132

Yüklə 68,55 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin