H5) Annexe 2 : rappel des tâches et partenaires indiqués dans le projet
T 1
|
Plaque rupture : Atherosclerotic plaque rupture according to blood flow and heart rate changes – modelling of heart rate pharmacological variations.
|
Jean-Pierre BOISSEL, LBBE, Thierry DUMONT ICJ
|
T 2
|
Arterial wall mechanics 1 : Changes of mechanistic properties of arterial wall according to its composition in cells and fibrous components – Modelling of ageing process
|
Behrouz KASSAÏ, LBBE, Violaine LOUVET, ICJ
|
T 3
|
Arterial wall mechanics 2 : Changes of mechanistic properties of arterial wall according to cell-cell interactions : relaxation status, physiological and pharmacological changes
|
Vincent RODIN, Université de Bretagne Occidentale – Laboratoire d’Informatique des Systèmes Complexes, EA 3883
|
T 4
|
Blood pressure regulation - Genetic components of blood pressure response to drugs - Phenotypic components of blood pressure response to drugs
|
Randy THOMAS, FRE 3190, François GUEYFFIER, CIC 201
|
T 5
|
Effect models of blood pressure lowering drugs - Compliance to drug prescription - Public health impact of blood pressure lowering drugs
|
Patrice NONY, LBBE
|
T 0
|
Coordination – Integration of the sub-models in the general models, discursive and mathematical aspects
|
Emmanuel GRENIER, ENS Lyon & François GUEYFFIER, CIC 201
|
Partenaire 1 : CIC 201 Inserm-HCL Lyon
Partenaire 2 : UMPA CNRS-ENS Lyon
Partenaire 3 : LBBE CNRS-UCBL-INRIA Lyon
Partenaire 4 : IBISC CNRS Evry
Partenaire 5 : ICJ CNRS-UCBL-INSA-Centrale Lyon
Partenaire 6 : LISYC UBO Brest
|
|
|
Partenaires/Partners
|
|
1 FG
|
2 EG
|
3 PN, BK, JPB
|
4 RT
|
5 ICJ
|
6 VR
|
Task 1
|
|
|
|
|
|
|
Task 2
|
|
|
|
|
|
|
Task 3
|
|
|
|
|
|
|
Task 4
|
|
|
|
|
|
|
Task 5
|
|
|
|
|
|
|
Task 0
|
|
|
|
|
|
|
Réunion BIMBO 12 juin 2009
Intégration de modèles
N.B. : ce compte rendu n’a pas encore été validé par l’ensemble des participants.
Participants : Violaine Louvet (P5), Thierry Dumont (P5), François Gueyffier (P1), Patrice Nony (P3), Marie-Aimée Dronne (P3), Randy Thomas (P4), Nadia Abchiche (P4), Riad Kahoul (P3), Gireg Desmeulles (P6), Alexandra Laugerotte (P1), Marie Maurin (P1), Ivanny Marchant (P2).
ANadia Abchiche présente un exposé sur les systèmes multi-agents A.1Définition
Le système multi-agents (SMA) est un outil informatique qui permet d’intégrer des modèles hétérogènes, en fonctionnement parallèle. Des algorithmes heuristiques sont développés afin de permettre aux agents d’interagir spontanément entre eux, avec l’utilisateur ou avec l’environnement. Il s’agit d’algorithmes qui fournissent rapidement une solution réalisable, pas nécessairement optimale et donc dits méthodes approximatives. Le SMA se compose d’agents artificiels, à l’inverse d’entités vivantes, présentant les caractéristiques suivantes : collectif, décentralisé, proactif (à l’opposé de réactif) car l’agent choisit sa tâche, ouvert à tout ajout d’agent en cours, dynamique car son état évolue avec le temps, concurrent. L’interaction est une propriété qui conditionne l’existence du SMA : s’il n’y a pas d’interaction, il n’y a pas de SMA.
A.2Fonctionnement
Le SMA fonctionne en travail collaboratif en faisant interagir les modules entre eux. Chaque module est représenté (exemple : un groupe de travail où chaque personne est à un coin du monde et sera représentée par un agent, exemple d’agent mobile : commerce électronique avec requête/recherche de données (exemple : billets avion)). Est-ce que le SMA peut être utilisé au niveau populationnel ? (agent = individu). Chaque agent possède sa boite aux lettres et des règles de décision peuvent être établies sur la consultation. Les tâches, les caractéristiques et les méthodes doivent être définies ainsi qu’une partie algorithme indépendante, non spécifique au domaine. Des règles sur la pertinence sont nécessaires (exemple : une modélisation biologique issue d’une thèse au MIT). A la différence de l’approche classique, l’approche à base de SMA ne propose pas une solution mais une stratégie dans le but d’obtenir une solution. Une solution intermédiaire est d’abord trouvée et l’interaction avec un autre agent détermine la stratégie la plus pertinente. La stratégie optimale n’est pas obligatoirement la première trouvée mais cela offre la possibilité de tester la stratégie jusqu’à sa fin. L’idéal est de tester parallèlement les différentes stratégies possibles avec leur pertinence pour éviter l’arrêt, pour gain de temps, dès la première stratégie pertinente, mais qui ne serait pas optimale.
A.3Problèmes d’intégration
Beaucoup de littérature existe sur l’intégration de formalisme car les problèmes d’intégration cherchent à être résolus depuis longtemps (problème des algorithmes combinatoires trop longs). Le SMA offre les possibilités de modifier tout ce qui vient de l’extérieur sans toucher au modèle, d’externaliser les interactions. Top-level ?
A.4Proposition
Le SMA peut proposer un certain nombre de stratégies : il ne donnera donc pas automatiquement un algorithme (une méthode et des règles peuvent être choisies). Pour ajouter un module, il faut s’intéresser à l’implémentation déjà existante, et ajouter du code ! Le système expert (connaissances profondes, phénoménologique ?) se distingue du système à raisonnement comportemental (causal, mécanistique ?). Le système expert s’assure que la décision a bien été suivie. Pour augmenter la probabilité de résoudre le problème qu’il rencontre, le SMA propose d’utiliser un peu de ces 3 raisonnements : 1) le raisonnement comportemental (inductif), 2) le raisonnement basé sur des cas (analogique : exemple d’une nouvelle panne dont la cause est déduite par analogie avec la panne précédente ; la fiabilité de ce type de raisonnement est incertaine), 3) le raisonnement sur l’effet des pannes (déductif : les plus critiques sont éliminées les premières, utilisant le concept d’arbre où toutes les possibilités sont présentées pour chaque composante).
A.5Programmation
Chaque partie intégrée doit être programmée distinctement de la partie qui va interagir avec chacune des parties intégrées (exemple : 3 parties utilisent 3 langages différents : C, Java, Fortran et une 4ème partie utilise un langage qui n’est aucun des 3 ; chacune peut communiquer avec cette 4ème partie sans connaître nécessairement le langage des autres).
Les interactions sont modifiables sans qu’il soit nécessaire de changer le code.
A.6Algorithmes stochastiques
Les algorithmes stochastiques de Gillespie permettent de calculer le risque (probabilité) de réaction, le temps avant la prochaine réaction (celle déclenchée) : si l’algorithme est dans x temps, les équations différentielles sont intégrées pendant ce temps x (remarque : le temps réel est différent du temps simulé mais les agents se partagent l’environnement donc aucun agent n’est bloqué si l’autre n’est pas encore arrivé au bout de sa tâche.
BRandy Thomas présente les résultats des analyses de sensibilité sur le modèle de Guyton
B.1Objectif des analyses de sensibilité
Le but des analyses de sensibilité globales est de déterminer sur quels paramètres agir pour obtenir un effet sur une variable.
B.2Collaborateurs
Alfredo Hernandez travaille avec David Ojeda sur la plateforme de M2SL (formalisme). Julie ? et ? travaillent sur l’ajout de modules dans M2SL et sur les analyses de sensibilité.
François Guillaud développe le module SRA sous Simulink (nouvelles découvertes depuis 92). Peter Hunter (Auckland) travaille sur CellML.
B.3Définition des analyses de sensibilité
L’analyse de sensibilité est générée par une boucle qui fait varier de très peu chacun des paramètres. L’effet est alors observé sur l’ensemble des variables à différents temps (5min, 1h, 1j, 1sem). 195 paramètres ont été testés et 295 variables de sorties observées. Pour le moment, la combinaison de paramètres n’est pas testée, ce qui implique qu’elle va mettre en évidence les paramètres importants seuls mais pas en combinaison (problème déjà rencontré par Marie-Aimée Dronne dans l’AVC : des paramètres non pertinents isolés mais qui le deviennent combinés). Un quart d’heure de simulation permet de générer un temps d’une semaine pour la variable observée. Le modèle de Guyton est stationnaire (non périodique) : il permet seulement d’obtenir des oscillations qui s’estompent. Alfredo Hernandez a ajouté un module pour les battements du cœur, oscillations rapides à cause desquelles le reste du modèle n’a pas très bien réagi. L’analyse de sensibilité n’est en revanche pas possible sur cette période car elle n’inclut pas le temps d’un battement. Les paramètres sont testés par variation de 1 à 5% (jusqu’à 30%). Les résultats obtenus montrent que plusieurs paramètres font varier une variable. Une publication est prévue avec renvoi vers un lien sur le web contenant les différents résultats. Le modèle de Guyton contient 200 paramètres. Une variation de 5% de la plupart des paramètres conduit à influencer la PA. Virginie Le Rolle a testé 30 variables d’entrée et 33 variables de sortie (paramètres ou variables).
L’analyse de sensibilité nécessite une représentation graphique différente de celle obtenue actuellement, qui ressemblerait plutôt aux graphiques à puces ADN, ou des graphiques avec des couleurs variant suivant la pertinence de l’effet du paramètre sur une variable.
B.4Précisions sur le modèle de Guyton
Chaque module dans le modèle de Guyton se comporte comme un modèle à part (sorties en fonction des entrées) : les entités ne sont pas modifiées quelle que soit la valeur entrée, ou les variables qui peuvent venir d’autres modules. Chaque module se comporte de manière différente seul qu’avec les autres (d’où la robustesse du modèle). Le modèle de Guyton contient une vingtaine d’équations différentielles et 100 contraintes. Les automaticiens qui l’ont construit ont généré des boites avec des calculs simples : multiplications, additions et 20 équations différentielles. Deux modèles de Guyton existent : celui de 72 (G72) : publié et connu des physiologistes et celui de 92 (G92) : non publié mais qui présente des modules supplémentaires comparé à celui de 72. G92 est utilisé en C et en Fortran. Il est conçu pour tourner dans l’environnement spécifique de l’équipe de Guyton.
CFrançois Gueyffier présente la problématique de l’intégration de modèle dans le cadre du projet BIMBO, qui débouche sur discussions C.1Le risque
Le projet BIMBO s’intéresse à la survenue de 3 événements cardiovasculaires. Le risque à estimer est donc à définir : il peut être global ou « individuel ».
C.2Les événements liés à la composition des fibres élastiques et non élastiques de la paroi artérielle (WP2)
Ils suggèrent l’intégration de mécanismes différents de ceux auxquels s’intéressent les praticiens actuellement à savoir la diminution de la PA (Par exemple : la glycémie et l’augmentation relative du diabète). Comme le modèle de Guyton (transformé en physiopathologique), ces événements entrent dans une démarche cognitive.
Des modèles existent actuellement sur ces événements mais ils ont été développés dans d’autres pertinences. L’estimation de ces variables exprime l’estimation du risque de survenue des événements.
C.3Stratégies thérapeutiques
Actuellement, 40-50% des hypertendus traités sont sous bi-thérapie et 30% sous tri-thérapie. Les stratégies de traitement anti-hypertenseur qui existent actuellement consistent à tester dans un premier temps un médicament puis à passer en bi- puis en trithérapie suivant l’augmentation du risque (traitement par pallier). Les traitements utilisés en premier choix sont les diurétiques (moins chers, anciens, efficaces) : ils diminuent la PA et le risque. Le sartan est utilisé en 2ème choix. L’impact des β-B sur l’écart PAS-PAD est à définir. Le SMA sera donc une bonne approche pour incorporer les stratégies thérapeutiques. La validation sera la première étape de la démarche en vérifiant la reproduction fiable des stratégies qui existent actuellement. M2SL sera incorporé dans un SMA pour tester différentes stratégies sur une population.
C.4Amélioration du modèle de Guyton
Le modèle de Guyton nécessite des améliorations avec le SRA et une meilleure action du système sympathique. Dans le modèle de base, le SS est peu présent mais présent ! : il agit sur les fonctions rénale et cardiaque. Le modèle de base n’utilise que la pression moyenne, mais une amélioration a été apportée.
C.5Genèse d’individus virtuels hypertendus
Les paramètres d’entrée du modèle de Guyton qui présentent une efficacité doivent être définis. Ils induiront une distribution permettant de retrouver globalement les caractéristiques de la population hypertendue dans la réalité (démarche inverse de la statistique). Une probabilité attribuée aux paramètres d’entrée (exemple : plusieurs paramètres qui peuvent varier en fonction de l’âge) permettra de définir différents types d’hypertendus (différents états physiopathologiques). Dans le modèle de Guyton, l’âge n’est pas explicitement donné. Les caractéristiques d’un individu de 35-40ans doivent être définies. L’algorithme de distribution permettra de générer une distribution statistique des individus à PA supérieure au seuil en fonction de différents paramètres. Les valeurs aberrantes (qui n’existent pas dans la réalité) seront tronquées. La démarche de la genèse d’hypertendus consiste donc à trouver les jeux de paramètres raisonnables qui fabriquent des hypertendus (raisonnables car il y en a sûrement qui existent mais qui donnent des choses qui n’existent pas). La population virtuelle permet d’introduire l’aléatoire.
C.6Précisions sur le modèle de Guyton
Le modèle de Guyton présente quelques aspects mécanistiques mais surtout phénoménologiques. Il utilise des fonctions de transfert dont 6 interpolations linéaires entre une douzaine de points. La généricité propose une démarche différente de celle de l’analyse de sensibilité. La démarche est une démarche sans a priori où les paramètres ne sont pas cherchés : les données du modèle lui-même sont modifiées, ainsi que les équations différentielles et les relations entre les paramètres.
C.7Les différents types d’hypertension
En question liminaire, la place de l’hypertension artérielle pulmonaire a été évoquée ; elle ne semble pas pertinente pour la création d’hypertendus dans le contexte du modèle de Guyton, mais elle représente un paramètre caractéristique de l’insuffisance cardiaque gauche, un des accidents évolutifs de l’hypertension artérielle systémique ; la forme aiguë de cette insuffisance cardiaque est la plus connue (l’œdème aigu du poumon, liée à une majoration brutale de l’hypertension artérielle pulmonaire par majoration des pressions de remplissage du ventricule gauche).
Plusieurs types d’hypertension semblent possibles à simuler dans le contexte du modèle de Guyton. Citons les modèles de Goldblatt (sténose d’artère rénale, unique ou bilatéral, sur rein unique ou non), le dérangement hormonal comme l’hyperactivité du système rénine angiotensine aldostérone (primum movens ?), l’hypersympathicotonie (étudiée pendant une trentaine d’années notamment par Stevo Julius à Ann Arbor, persuadé que la pré-hypertension était un stade évolutif dans le continuum de la maladie, et révélant que la phase initiale était marquée par une hypersympathicotonie, relayée plus tard par une majoration des résistances artérielles périphériques, témoignant d’un véritable début de maladie artérielle), les modifications de la sensibilité au sel.
Les hypertendus simulés actuellement doivent être plus réalistes mais l’hypertension essentielle n’a par définition pas de cause expliquée.
Un travail de synthèse bibliographique plus poussé apparaît nécessaire. Guyton et son équipe ont proposé une piste à mieux documenter : la majoration simultanée des résistances des artérioles rénales afférentes et efférentes aurait comme conséquence une forme d’hypertension artérielle typique de l’hypertension artérielle essentielle. Cet article est à critiquer en profondeur, avec notamment la discussion des traits caractéristiques de l’hypertension essentielle, notion plutôt contradictoire. D’autres articles intéressants : Guyton et Montani (1988), Van Vliet et Montani (2009). Pour l’HTA essentielle, deux écoles existent : celle de Kaoli, sortie du groupe de Guyton et pour laquelle l’HTA provient de la médullaire interne rénale (si P augmente, la DS G augmente et cela provoque un effet sur la réabsorption sodique) ; par simplification, on se rend compte que lorsque FG augmente, la DS augmente mais de manière tellement moindre dans cette région que cela n’a aucun effet sur la RBF et une deuxième école pour laquelle une modification de la pression rénale ne peut pas ne pas changer la pression (Alicia Mcdonald, Dr Marshall, L.Mome). La pression filtrée augmente de manière liée à la filtration glomérulaire (action du SRA) : GFR = KF (∆P - ∆COP). La filtration glomérulaire, l’excrétion sodique et le BMI sont des caractéristiques disponibles à l’échelle épidémiologique ; les résistances périphériques et le débit cardiaque aussi ?
DIvanny Marchant présente ses résultats sur la simulation d’hypertendus via Guyton
D.1Paradigmes du modèle de Guyton
Guyton propose différents paradigmes pour simuler des hypertendus : un modèle de surcharge de sel (ingestion de sel augmentée n fois par rapport à l’ingestion normale, paramètre NID) associé à une perte de la masse rénale (70% de la masse fonctionnelle, paramètre REK).
N.B. : Il existe d’autres façons de simuler des individus sensibles au sel.
D.2Intégration à la population virtuelle
Pour intégrer le modèle de Guyton modifié à la population d’individus hypertendus générés, les variables d’entrée de Guyton sont ajustées pour obtenir en sorite les variables constitutives de la population virtuelle (PVR) : la PAM est calculée à partir de PAS et PAD, afin de faire correspondre donc les variables de la PVR et celles de G92.
D.3Différents types d’hypertension
La façon de modifier le paramètre de Goldblatt (implique la résistance afférente pour la simulation d’hypertendus) est à définir. La simulation d’un clamp d’un des 2 reins n’est pas réalisable car le module existant comporte le bloc des 2 reins non séparés. Une sténose de l’artère rénale est-elle sensible aux diurétiques d’après l’expérience clinique ? Elle l’est de façon certaine aux IEC, dont la prescription représente un véritable test diagnostique. Quand P diminue, le SRA est activé pour compenser et la rénine revient à son niveau d’activité de base.
Plusieurs parties du modèle de Guyton manquent d’explications…
EActions BIMBO suite à cette réunion -
Organiser un petit groupe de travail sur les événements liés à la composition des fibres : FG, GD, RK
-
Proposer une stratégie (scénario) : NA
-
projet BIMBO et recommandations à lui transmettre
-
Genèse d’hypertendus à discuter : RT et TD
-
Créer site BIMBO : spip, wiki
-
Résumer Guyton pour les partenaires du projet BIMBO : AL
-
Contribuer au CEMRACS (RK et AL)
Référence du formulaire : ANR-FORM-090601-03-01
Dostları ilə paylaş: |