Title of Your Presentation



Yüklə 6,81 Kb.
tarix03.04.2018
ölçüsü6,81 Kb.
#46436

On a multivariate Multi-Resolution Analysis

using generalized (non homogeneous) polyharmonic splines
Christophe Rabut
University of Toulouse (INSA, IMT, IREM), France

Christophe.rabut@insa-toulouse.fr


Keywords. Multi-resolution Analysis, polyharmonic splines, Whittle-Matérn kernel, Fourier Transform.
Polyharmonic splines use the kernel defined as an inverse Fourier transform of the function û()= 1/ ||||2n . The Matérn kernel is the inverse Fourier transform of û()= 1/ (||||2+2) .We generalize these kernels by regularizing û in the form function û()= 1/ Producti(||||2+ki2)i, (some ki may be, or not be, zero, the I may be integer or non integer positive numbers) and we build the corresponding multi-resolution analysis. In particular we build the associated Lagrangean function, “B-spline”, semi-orthogonal wavelets and orthogonal wavelets. Then we determine some of the properties of the so-derived functions and wavelet decomposition (stability, decay at infinity). Throughout this work we make an extensive use of the Fourier Transform of the various introduced functions.

The role of the ki and of the i are examined. To be short, the so-obtained spaces can be considered as regularized spaces of fractional polyharmonic splines under tension, the i being the value of (fractional) orders while the ki are weights directly connected with the tension associated to the order i (precise connection will be given during the talk). Examples are given, showing the influence of the i and f the ki , which is easier seen in one dimension but is similar in any dimension.


Acknowledgements.

This is a joint work with Milvia Rossini and Mira Bozzini (Milano)


References

[1] Charles Micchelli, Christophe Rabut, Florencio Utreras (1991) Using the refinement equation for the construction of pre-wavelets III: elliptic splines Numerical Algorithms, vol 1, pp331-352.

[2] Barbara Bacchelli, Mira Bozzini, Christophe Rabut, Maria-Leonor Varas (2005) Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets. Appl. Comput. Harmon. Anal., pp. 282-299

[3] Christophe Rabut, Milvia Rossini (2008) Polyharmonic multiresolution analysis: an overview and some new results. Numerical Algorithms 48, pp.135-160.



[4] Mira Bozzini, Milvia Rossini, Robert Schaback (2013) Generalized Whittle-Matérn and polyharmonic kernels. Advances in Computational Mathematics, 39, 129-141
Yüklə 6,81 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin