Aylanish figuralari


Javob: πL2 ( – cosα). 7 – masala



Yüklə 449,5 Kb.
səhifə3/5
tarix20.12.2022
ölçüsü449,5 Kb.
#121527
1   2   3   4   5
Aylanish figuralari

Javob: πL2 ( – cosα).


7

– masala.
Radiusi R ga teng bo`lgan shardan o`q kesimida α burchak tashkil qiluvchi shar sektorining hajmi va to`la sirtini toping.
Yechilishi:
Shar radiusini R bilan, segment balandligini DC =h va
AD kesmani r bilan belgilaylik. Sektor hajmi V= πR2h ga
teng. ∆ACD uchburchakda ACD = , bundan h = rtg .
∆ADO uchburchakdan r= R sin . Ma`lumki,
V= πR2h= R3 sin2 .
Sektorning to`la sirti ABC segment yuzi 2πRh va AOB konus yon sirti πRr lardan tashkil topadi.
Demak, S = 2πRh + πRr = πR2sin (2tg +1).
Javob: V = R3sin2 ; S =πR2sin (2tg +1).




8 – masala. Silindrning balandligi 5 ga, uning asosiga ichki
chizilgan muntazam uchburchakning tomoni 3 ga teng.
Silindrning hajmini toping.
Yechilishi:
Ma`lumki silindr hajmi V =Sasos*H = πR2H formula
bilan hisoblanadi. Bu yerda Н =5 shartda berilgan. R radiusni
ABC muntazam uchburchakdan foydalanib topamiz. Ya`ni

R = OC = = · = .

ekanligidan R =3 . Demak, V = 45π .


Javob: 45 π.


9

– masala.
silindrning yon sirti yoyilganda uning diagonali asos tekisligi bilan 450 burchak tashkil qiladi. silindrning yon sirti 144π2 ga teng. silindr asosining radiusini toping.
Yechilishi:
Masala shartidan Syon = 144π2
ekanligiga ko`ra,

AB · BS = 144π2  AB =BC =12 π.


Silindr asosi aylanasi uzunligi

AB ga teng ekanligidan,
2πR =AB, 2πR = 12π
demak R =6.
Javob: 6


10 – masala. Radiusi 5 ga teng bo`lgan sharga ichki chizilgan konusning balandligi 4 ga teng. Konusning hajmini toping.

Yüklə 449,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin