BiLİm tariHİnde matematiK


MEZOPOTAMYALILAR VE Pİ SAYISI



Yüklə 166,58 Kb.
səhifə4/4
tarix17.01.2019
ölçüsü166,58 Kb.
#100096
1   2   3   4

MEZOPOTAMYALILAR VE Pİ SAYISI

                    Pi sayısı üzerinde, Babilliler'in çok eski zamanlardan beri, kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak p=3 değerini kullanıyorlardı. Bazı tabletlerde p=3,125 değeri ne de rastlanılmıştır. Aydın Sayılı, adı geçen eserinde, "Mezopotamyalılarda, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum mevcuttur" der. Böyle problemlerde sonuç hesaplanırken pi için, değerinin kullanılmış olduğunu belirtir.


                    Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman p=3,125 değerini uygularlardı. Ancak pi sayısının; Mısırlılarınki' nden ve Susa tabletlerinin gösterdiği değerden oldukça daha iyi bir değeri, ilkin Archimides tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar, yamuk alanı hesabı ile, silindir ve prizma hacim hesaplarını bildiklerini ve pi için de 3 değerini kullandıklarını belirtir. Fakat eski Babil çağına ait olup, Susa'da bulunmuş olan tabletlerde pi için kabul edilen değerin 3,125 olduğu anlaşılmaktadır.

TÜRK İSLAM DÜNYASI VE Pİ SAYISI

              15. yüzyıl Türk - İslam Dünyası ünlü matematik ve astronomi alimi, Giyasüddin Cemşid, pi sayısının değerini, 16 ondalığa kadar doğru olarak hesaplayan ilk kişidir. Cemşid'in pi için verdiği değer p=3,1415926535898732 dir. 15. yüzyılda, pi sayısının, ancak 6. ondalığına kadar olan değeri bilinmiş olduğuna, 16. ondalığa kadar doğru değerin de, batı bilim dünyasında, Hollandalı matematikçi Adriaen van Rooman tarafından, doğru olarak hesaplandığına göre, Gıyasüddin Cemşid'in bu konuda da, zamanının matematiğinden 200 yüzyıl ileride olduğu ortaya çıkmaktadır.


NE KADAR HOŞ DEĞİL Mİ ?

3,14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989...

 

 Pİ SAYISININ İRRASYONELLİĞİ

            Nasıl bir pi sayısı? Örneğin: m ve n birer tam sayı olmak üzere, pi sayısının değeri m/n şeklinde yazılabilir mi? yani pi sayısının değeri rasyonel bir sayı mıdır? Başlangıçta, matematikçiler bu yönde ümitliydiler. Pi sayısının bu kadar çok ondalık kısmının hesaplanmasının nedenlerinden biri de, buydu herhalde. Matematikçiler bekliyorlardı ki, bir yerden sonra, basamaklar önceki değerlerini tekrar etsin, yani devirli bir ondalık sayı halinde yazılabilsin. Bu olmadı, sonunda,  1761yılında, İsviçreli matematikçi Lambert, pi sayısının irrasyonel olduğunu, yani dairenin çevresi ile çapının bir ortak ölçüsü olmadığını ispatladı. 


SIFIR RAKAMI HAKKINDA

                        Onluk sistemin bir üstünlüğü, sıfır rakamı için ayrı bir işaretin (sembolün) bulunmasıdır. Sıfır işaretinin, gerektiğinde basamaklara (hanelere) yazılması gerekmektedir. Aksi halde, boş bırakılan basamak (hane) birçok yanlış anlaşılmalara sebep olur. Örneğin : Bugün, rakamla 407 şeklinde yazdığımız, dört yüz yedi sayısını, sıfır işareti kullanmadan, 4.7 veya 4 7 (4 ve 7 nin arası biraz boş bırakılarak) şeklinde göstermek mümkünse de,anlam bakımından birçok karşılıklara sebep olabilir.


                        Sıfır kavramını (fikrini) ilk olarak, hangi medeniyet içerisinde ve kim tarafından ortaya konul-muş (kullanılmış) olduğunda, kaynaklar hemfikir değildi. Bununla beraber, Eski Hintliler'de, milattan sonra 632 yılından itibaren sıfır için özel bir işaretin kullanılmış olduğunu, zamanımıza kadar intikal eden belgeler göstermektedir.
                        Eski Hintlilerden kalma kitabelerde (yazıtlarda) görülen, rakam ve işaretler, günümüzde "Hint-Arap Sistemi" olarak adlandırılan sisteme göre benzerlik olduğunu, ve nümerik (terkiym) sistemin, o devirde kullanıldığını göstermektedir. Daha sonraki yıllara ait kitabeler, sayılarda, rakamın kendi zat'i değeriyle vaz'i (konum) değeri, (yani sayı içindeki anlam değeri) arasındaki bağıntının bilindiğini, sıfır anlamını veren, "0" gibi bir işaret kullanıldığını da göstermektedir.
                        Sıfır için, ayrı bir özel işaretin bulunuşu ve basamak fikrinin ustaca kullanılışı, onluk sistemi (decimal), sadece matematiğin değil, ilim dünyasının, en elverişli sistemlerinden biri yapmıştır. Onluk sistemin bu halı için, Fransız matematikçi Pierre Simon Laplace (1749-1827), bu konuda "Dünyanın en faydalı sistemlerinden biridir." demektedir.

SIFIR RAKAMI VE ESKİ HİNT DÜNYASI

                  Romalı ve Çinlilerin eksine, Eski Hint alimleri, aritmetik işlemleri, özel bir harf ve işaret belirtmeden, sadece 1 den 9 a kadar olan rakamlardan istifade ederek yazarlardı. Rakamla, hesap yapmanın tek örneği olan, bu pozisyonun tespiti ve yazılması merhalesine ulaşanlar, sadece Eski Hintliler ve Mayalardı.


                 Kaynaklar; Hindistan'dan, 300 yıl kadar önce, sayı işaretinin, rakam şekline dönüşmeye başladığını belirtmekte. Hintliler, en geç, 6. yüzyıla doğru, belki de biraz daha önceki tarihlerde, aritmetik işlemlerde, sadece 1 den 9 a kadar devam eden dokuz ayrı rakam halinde kaldılar. Böylece, hesap işlerinde, sağdan sola doğru çoğalan (yükselen) rakamlar, ilk olarak ortaya çıktı. Bu rakamlar, hemen hemen 622 yılından itibaren Hindistan dışında da tanınmaya başladı. Fırat'ta bir okul müdürü, aynı zamanda da manastır idarecisi olarak çalışan Suriyeli alim Sevarus Sabokht : "Bilinen bütün usullere üstün olan, Hint hesabının, yani dokuz ayrı rakamın (işaretin) maharetli usulünden bahseder" Bu durum, Hint rakamlarının mahzar olduğu ilk tak-tirdir. S. Sabokht, bu dokuz ayrı rakamlarla, yeni bir usul dahilinde hesap yapabildi.

 

                    Ancak; bu dokuz ayrı rakam, bazı sayıları ifade etmeye yeterli gelmiyordu. Çünkü; üç bin yedi yüz elli dört olan bir sayıyı 3754 şeklinde belirtmek mümkündür. Değeri üç yüz sekiz olan bir sayının da, 38 şeklinde meydana çıkmaması için, noksan (boş) kalan onlar basamağına (ha-nesine) değişik bir işaretlemenin yapılması zorunludur. Noksan (boş) kalan, basamağı (ha-neyi) işaretleyip, belirtmek için "boşluğu" şekillendirmek, anlamlandırmak zorundaydılar. Noktayı "sunya" veya "sunyabinde", boşluk veya içi boş yuvarlağı da "kha" kelimesi ile adlandıran Hint alimleri, boş kalan basamağa (haneye), sembol olarak "daire" veya "nokta" şeklinde yeni bir sembol verdiler.


                     Düşünce tarihin en önemli olaylarından biri sayılan, bu sayı yazısına, son mükemmeliyeti Hintliler'in vermiş olduğu ortaya çıkmaktadır. O halde, menşe itibariyle, sadece, basamak sistemi içinde, noksan basamağa (haneye) gerekli işaret olarak başvurulan bu sembol, yani bugünkü ifadeyle "sıfır" rakamı, derhal müstakil bir sayı şeklinde, ilk olarak Hint hesabında ortaya çıkmıştır. Bu sayı işareti, yani "0" (sıfır) veya "." (nokta) anlamındaki işaret, miladın 400. yılında, ilk defa Hint yazılı eserleri içinde görülmeye taşlar. Hint Dünyası'nın, ünlü matematikçi ve astronomu Brahmagupta (598-660), 632 yılında yazdığı, astronomi konuları ile ilgili Sidd-hanta adlı eserinde, dokuz ayrı sayı işareti ve sıfır ile birlikte hesap yapmaya dair kaideleri göstermiştir. 
 

SIFIR RAKAMI VE TÜRK -İSLAM DÜNYASI

                    773 yılında, Kankah isimli Hintli bir astronom, Halife el-Mansur'un (754-775), Bağdat'taki sarayına gelir. Zamanın ünlü İslam alimi İbn'ül Adami, astronomi cetvelleri ile ilgili eserinde, ilim tarihi için önemli olan bu olayı, "İnci Gerdanlık" başlığı altında şöyle açıklar;        

                    "Hicretin 156. (773) yılında, Hintli bir alim elinde bir kitapla, Halife el-Mansur'un huzuruna çıkar. Kardağa'ların Kral Figar adına istinsah ettikleri bir kitabı, Halifeye sunar. El-Mansur, bu eseri, hemen Arapça'ya çevrilmesini ve gezegenlerin hareketleri ile ilgili bir eser yazılmasını emreder... Bu görevi, Muhammed bin İbrahim el-Fezari üzerine alarak 'Astronomlar Nazarında Büyük Sinhind' adlı bir eser yazar. Bu eserin etkinliği, halife el-Memun zamanına kadar sü-rer. Eseri, Muhammed bin Musa el Harezmi, astronomlar için yeniden hazırlar (yazar). Sinhind Metodunu uygulayan astronomlar, eseri çok beğenirler ve konusunun süratle yaygınlaşmasını sağlarlar."

                      Hintli alimin, beraberinde Bağdat'a getirdiği ve onunla, önce Halife el-Mansur'un ilgisini çek-tiği kitap, gerçekte Brahmagupta'nın Siddhanta adlı eserinden başka bir eser değildi. Sinhint adıyla Arapçaya çevrilen bu eser, zamanın halife ve alimleri arasında, hemen ilgi görüp süratle yayıldı. Harezmi tarafından yeniden hazırlanan söz konusu eser, İngiliz tercüman Baht'lı Adelhard tarafından, zamanın ilim dili olan Latinceye tercüme edildi ve Batılı alimlerin istifadesine sunuldu. Bu tercüme kitap; Hint sayılarını açıklayan, Hint hesabını, sayı yazısını, toplama ve çıkarma, ikiye bölme, iki misli artırma, çoğaltma ve bölme ile kesir hesabını öğreten Hesap Sanatına Dair adlı ikinci eserdir.

                       Bu Latince tercüme eser, önceleri İspanya'ya gelir ve 12. yüzyıl başlarında, Orta Avrupa'ya geçerek yaygınlaşır. Hint alimleri, daire şeklinde gösterdikleri ve bugünkü ifadeyle "0" (sıfır) olarak adlandırılan kelime için, bir şeyin hiçliği ve boşluğu anlamını ifade eden sunya adını vermişlerdir. İslam alimleri (Araplar) da bu işareti ve anlamını öğrenince; Arapça da boşluk anlamına gelen essıfır adını vermişlerdir. Leonardo, essıfır kelimesini Latince'ye tercüme ederek Latince metinlerde cephrum şeklinde Latinceleştirdi. Daha sonraki yıllarda, Avrupa'nın değişik memleketlerinde, değişik yazım (imla) şekilleri kazanmıştır. Bunlardan :

                        Leonardo'nun eserine istinaden, önce zefero, daha sonra da zero yazım şeklini aldı ( Livra kelimesinin zamanla lira yazım şeklini alması gibi.) Fransa'da ise; gizli işaret anlamına gelen chiffre şeklinde adlandırılan cephirum kelimesi, chiffer = hesap yapmak şeklini alarak, yay-gınlaşmaya devam etti. Batı'da, İtalyanca aynı anlama gelen, zero kelimesinin kabülü sonucu, bu kelimenin iki ayrı anlamı sebebiyle İngiltere'de cipher ve zero şeklini aldı. Almanya'da da, ziffer yazım şeklini aldı. 14. yüzyıldan sonraki yıllarda da ziffern yazım şeklinde kullanılmaya başlandı. 

                        Saverus Sabokht, Brahmagupta ve Harezmi isimleri, Arap rakamlarının, Batı'da görülmesin-de birbirini takip eden üç isim olarak karşımıza çıkmaktadır. Batı literatüründe "Arap Rakamları" olarak bilinen, İslam Dünyası rakamlarının, sıfır "0" dahil olmak üzere, on ayrı şeklini Batı'ya ilk defa öğreten, papalık tahtının şair ve matematikçisi Gerbert olmuştur. Gerbert'in etkisi tam sekiz yüz yıl devam etmiştir. Gerbert, öğrenimini Aurlillac Kilisesi'nde tamamlamıştır. Burada edindiği bilgiler sonucu, birçok matematikçinin dikkatini çekti. Sonuçta da, matematik araştırmalarını hızlandırdı. İstinsah faaliyetlerini çoğalttı. Gerbert, hakkında değişik rivayetler vardır. Bu rivayetlerden birisi şudur

                          Gerbert, sıfır kavramını bilmiyordu. Mesela 1002 sayısında sıfır olmayınca, yazılanların anlaşılması mümkün değildi. Gerbert ve öğrencileri, sıfır hakkında, herhangi bir bilgiye sahip olmadıklarından, yapılanların manasını kavrayamadıkları anlaşılmakta. Gerbert, sayı yazısını, Batı Araplarından getirir. Araplardan, İspanya seyahati sırasında öğrendiği sanılmaktadır.       

                           Gençliğinde itibaren, Hindistan'ın bir ucundan öbür ucuna yaptığı bir çok seyahatlerle, Hint dilini ve ilmini tam anlamıyla Öğrenen Gertert'in çağdaşı olan Beyruni'den o sıralarda, Hindistan'da yazılmış harf şekillerinin ve ilk rakam şekillerinin diğer memlekete geçince, değiştiğini öğreniyoruz, Beyrurıi, Arapların, Hintlilerden en elverişli rakamları aldıklarını açıklar. Arapların birbirinden farklılık gösteren iki çeşit, Hint sayı yazısını kullandıklarını, Harezmi de açıklar.

                            Harezmi tarafından, 830 yılında yazılan eserin ilk kopyaları, Viyana Saray Kütüphanesinde bulunmaktadır. Bu elyazmaları (manüskri), 1143 tarihini taşımaktadır. Salen Manastırı'nda bulunan ikinci bir kopya ise, bugün Heilderburg'ta muhafaza edilmektedir. Avrupa, ilim dün-yasında sunulan bu önemli belge ile, Araplar'ın, önce birler basamağından başlayarak, rakamları sağdan sola doğru yazıp okuduklarını, bu eserden öğrenir. Harezmi'ye ait bu eser-de; toplama ve çıkarma işlemlerine ait örnekler görülmektedir.


                            Brahmagupta'nın, Siddahta adlı eseri, 776 yılında, Saverus'tan 114 yıl sonra, Arapça'ya çevrilen bir eserinin içinde yer almıştır. Gerbert'ten yüz yıl sonra, Harezmi'nin Latince tercümesi, Orta İspanya yoluyla Batı'ya ulaşır. Bu tarihlerde, "Arap Sayı Yazısının", ilim dünyasındaki zaferine çığır açan başka bir şahıs ile karşılaşıyoruz.
                            Pizza'lı Leonardo (1180 - ?) ; matematik bilgisinin, esaslarını bizzat, ilk kaynaklarından, yani Mısır'a yaptığı uzun süreli seyahatler sonucu elde etmiştir. Elde ettiği bilgileri de, Batı'ya öğretmiş-tir. Leonardo'nun babası, Cezayir sahillerinde ticaret işleri ile meşgul idi. İslam medeniyetinin etkinliğini gören, baba Leonardo, oğlunu yetiştirmek için yanına çağırır. Oğlu Leonardo Hint, yani Arap (İslam) rakamları ile hesap yapmaya hayran kalır. Hint hesap sistemlerinin, her türlü uygu-lamasını öğrenir. Bu arada, İskenderiye ve Şam kütüphanelerinde, eline geçirebildiği ilmi değeri olan eserleri de toplayıp, Avrupa'ya götürdüğü tarihi bir gerçek olarak bilinmektedir.
 
 

SIFIR RAKAMININ KRONOLOJİK GELİŞİMİ

*  M.Ö. 3000 yılları: Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.

*   M.Ö. 700-500 yılları : Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.

*   M.S. 2. yüzyıl : Eski Yunan'da, Batlamyos'un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden "0" şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.

*   M.S. 400 yılları : Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, "0" ve "." şeklinde işaret (sembol) görülmeye başlamıştır.

*   M.S. 632 : Eski Hint alimi Brahmagupta'nin astronomi ile ilgili olan Siddhanta adlı eserin-de, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.

*   M.S. 830 : İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.

*   M.S. 1100 yılları : Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.

 

TASARI GEOMETRİSİNİN TARİHSEL GELİŞİMİ

             


Tarihin ilk zamanlarında bile, insanlar, konularını açıklamak ve tanımlamak için, bazı şekilleri, zihinlerinde canlandırma yoluna gitmişlerdir. Çağımızda bu anlatım; teknik resim, perspektif, fotoğraf ve benzeri yollarla yapılmaktadır. Tasarı geometri üzerine ilk temel bilgiler; Fransız mühendis ve matematikçi Gespart Monge (1746 - 1818) tarafından ortaya konmuştur. Gespart Monge, tasarı geometrinin ana ilkesi olan, dik izdüşüm metodu üzerinde çalışmalarda bulundu. 1795 yılında bu konuda, ilk kitabını yayınlamıştır. Böylece, cisimlerin grafik olarak gösterilmelerine ait temel prensipler ortaya atmış ve uzaysal teknik problemlerin de, çözümlenmelerini sağlamıştır. Matematik tarihi eserleri, Gespart Monge için: "Tasarı geometriyi kurmuş ve sistemleştirmiştir" şeklinde bahseder. Gespart Monge; tasarı geometrinin konusunu ve temel amacını şöyle belirtmektedir: Sadece iki boyutlu olan bir resim kağıdı üzerinde üç boyutlu ve tam doğru olarak, tabiatta belirli cisimleri temsil edebilmek ve eksiksiz bir tasvir ve tanımlama yapmak suretiyle cisimlerin şeklini tanımayı mümkün kılarak, şekillerinden ve karşılıklı konumlarından ileri gelme bütün gerçek bilgileri elde etmek.
                        Tasarı geometride inceleme yapan diğer bir matematikçi olarak da Poncelet'i (1788 - 1867) görmekteyiz. Poncelet bu konuda, analitik geometri ile rekabet edebilecek derecede fikirler öne sürmüştür. Poncelet, süreklilik ve izdüşüm prensiplerine dayanan, sırf geometrik bir metot kabul etmiştir. Ayrıca bu konuda; Chasles, Pudlowski( 1597 - 1645) gibi matematikçiler de ilgilenmişler ve bazı münferit temel bilgiler ortaya koymuşlardır.
ESKİ HİNTLİLERDE TRİGONOMETRİ


          İçinde bulunduğumuz yüzyılın bilimsel araştırmaları, Hint Dünyasının, özellikle 6., 7., 9. ve 12. yüzyıllarda matematik ve astronomide bilimsel bakımdan üstün düzeyde ilginç çalışmaların varlığını ortaya çıkarmıştır. Eserleriyle adları zamanımıza kadar gelebilen Hint bilginleri, bilim tarihinde kendilerini etkin bir biçimde göstermektedirler. Bunlardan; belirttiğimiz yüzyıllar için-de yaşamış olan, Hint matematikçilerinden; Brahmagupta (598 -660), Aryahatha (6. yüzyil), Mahavira (9. yüzyil) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.


          Kaynaklar; Hintli matematikçilerin, özellikle trigonometri konusundaki bilgileri, müspet şekil-de zenginleştirmiş olduklarını ve Mezopotamya temelli bilgileri, zamanın bilim dili olan Sanskritçe ve Pevlevice'den yapılan tercümeler yoluyla, 8. yüzyıl ortalarından itibaren İslam Dün-yasına intikal etmiş olduğunu belirtir.
 

ESKİ MISIRLILARDA TRİGONOMETRİ




             İnceleyebildiğimiz kaynaklar; Mısır matematiğinde seked ve sek kelimelerinin, bir açının kotanjantına den anlam ifade etmesinden hareket ederek, trigonometrinin, başlangıcını eski Mısırlılara kadar götürmenin gerektiğini belirtir. bu konuda Aydın Sayılı "Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp" adlı eserinde şunları yazar: Mısır'da seked dışında, bu konuda herhangi bir gelişmeye şahit olmuyoruz. Seked'e benzeyen ya da onunla aynı olan bir kavramla "Mezopotamya Matematiğinde" de karşılaşılmakta olduğu ve trigonometrinin başlangıcını Mısırlılara götürmek isabetli düşünce sayılmaz. "Mısır Geometrisinin", "Doğru Geometrisi" olarak vasıf taşıdığını belirterek, müşterik Gandz'a atfen de Mısır'da "Açı Geometrisinin" mevcut olmadığını belirtir.
 

ESKİ YUNAN'DA TRİGONOMETRİ


             Trigonometri'de: "Herhangi bir üçgende, dik kenarların kareleri toplamı, hipotenüsün karesine eşittir" şeklinde temel bir teorem vardır. Bu teoremin adı Pisagor teoremi olarak bilinir. Gerçekte; bu teoremin varlığı, Pisagor'dan ortalama 2000 yıl kadar önceleri, Eski Mısır ile Mezopotamyalılar tarafından Babil çağında bilinmekte idi. Mezopotamyalılar, bu teoremin, hem özel hem de genel şeklini biliyorlardı. Bilim tarihi eserleri; Thales'in, Pisagor ve Öklid'in, eski Mısır ve Babil yörelerini uzun yıllar dolaşmış olduklarını belirttikleri gibi, bu bilginlerin temel matematik bilgilerini, Mısır ve Babil' den elde etmiş olduklarını belirtir.


 

MEZOPOTAMYALILAR'DA TRİGONOMETRİ


              İnceleyebildiğimiz kaynaklar; Mezopotamyalılarda, temelinde geometri bulunan, bugünkü trigonometri cetvellerinin ilkel bir örneğiyle karşılaşılmakta olduğunu, ve Hipparchos'un trigonometri çalışmalarının, ilkel başlangıcının "Mezopotamya Matematiğine" kadar geri gitme-sinin mümkün sayılabileceğini belirtmektedir. Aydın Sayılı, yukarda adı geçen eserinde bu konuda geniş bilgi verdikten sonra, "Trigonometri tarihinin, Embriyolojik Menşeinin Mezopotamyalılara kadar geri gittiğini ve Mezopotamyalılardan, Hipparchos'un bu yönden etkilenmiş olduklarını ileri sürebilir" der.


 

TRİGONOMETRENİN AVRUPA'DA GÖRÜLMESİ


                    8. ile 15.yüzyıl Türk - İslam Dünyası matematik ve astronomi bilginlerinin hazırladıkları eserlerin hepsinde, bugünkü trigonometrinin temel bilgileri vardı. Bu durumda; bu devir Türk - İslam Dünyası'nın ünlü matematik ve astronomi bilginlerinden, Sabit bin Kurra, Beyruni, Ebu'l Vefa, Ali Kuşçu ile çağdaşlarına ait ilgili eserlerin asılları ya da tercümeleri, Johann Müller ve çağdaşları ile kendisinden önce ve sonra gelen Avrupalı matematikçilerin gözlerinden kaçmış olması düşünülemez.


                    Johann Müller 8. ile 15. yüzyıl Doğu bilim dünyasının ünlü yazma eserleri ile zengin bir kata-loga sahip olan başta Vatikan ile diğer Avrupa kütüphanelerinden elde ettikleri, doğu bilim dünyasından intikal etmiş matematik ve astronomi ile ilgili eserlerin bir kısmını incelemiş ve zamanının bilim dili olan Latince'ye çevirmişlerdir. Bu çalışmaların sonunda De Triangulis Amnimodis Libri V. adlı bir kitap yayınlamışlardır. Bu kitap, yukarda sözünü ettiğimiz düzlem ve küresel trigonometri konularını kapsayan Latince bir eserdir. Johann Müller'in bu eseri de, ölümünden 57 yıl sonra, yani 1533 yılında Nurnberg'te yayınlanmıştır.




                       Bu durumda, Johann Müller'in, El - Battani'den taklid edilmiş denilen eser, kendisinin ölümün-den sonra gelen çağdaşları bile, 57 yıl anlamakta güçlük çekmiş oldukları anlaşılmaktadır. El - Battani ve Ebu'l Vefa'dan 500 yıl kadar sonra, trigonometri ile ilgili bilgiler; Avrupa'da, Johann Müller ve çağdaşlarının eserleri ile 1533 yılından itibaren görülmeye ve yaygınlaşmaya başladığı açık olarak ortaya çıkmaktadır.
Yüklə 166,58 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin