Contents preface (VII) introduction 1—37



Yüklə 18,33 Mb.
səhifə282/489
tarix03.01.2022
ölçüsü18,33 Mb.
#50422
1   ...   278   279   280   281   282   283   284   285   ...   489
Fig. 9.1. Control volume for hydraulic jump
With the assumptions that θ is small (i.e., sin θ ≅ 0), and β1 = β2 = 1, Eq. (9.1) becomes
ρ g z1 A1 – ρ g z2 A2Ff = ρQ (u2u1) (9.2) Equation (9.2) can be rewritten as








Ff




F

Q2




I

F

Q2




I
















= G







+

A1

z1J

G




+ A2

z2 J










ρ g







gA2













H

gA1




K

H




K




or

Ff

= MM































2






















ρ g







1
































































where,




M =

Q2

+ A z






















gA




























































and M is termed the specific momentum or force function or specific force.


(9.3)

(9.4)


(9.5)



SURFACE AND SUBSURFACE FLOW CONSIDERATIONS FOR DESIGN OF CANAL STRUCTURES

319

If the jump occurs in a horizontal channel and is not assisted by any other means, such as baffle blocks, then Ff ~= 0, and Eq. (9.4) yields










M1 = M2




(9.6)




or

Q2

+ A1

z1

=

Q2

+ A2 z2

(9.7)




gA1

gA2


























9.2.1. Hydraulic Jump in Rectangular Channels
A hydraulic jump formed in a smooth, wide, and horizontal rectangular channel is termed classical hydraulic jump. For rectangular channel of width B,





Q = u1 A1 = u2 A2




A1 = B1 h1

and

A2 = B2h2

z1 = h1/2

and

z2 = h2/2

Substituting these values into Eq. (9.7) one can, after simplification, obtain


1

h h (h

+ h ) =

q2




2

g




1 2 1

2



where, q = Q/B. Equation (9.8) has the following solutions :






h2 =

1 ( 1 + 8F 2

− 1)







h1




2

1




























and

h1

=

1 ( 1 + 8F

2

− 1)




h2




2

2


























(9.8)

(9.9)
(9.10)




in which, F1 and F2 are the Froude numbers at sections 1 and 2, respectively. Froude number




F equals u/ gD in which, D is the hydraulic depth and equals A/T where, T is the top width of flow. Equations (9.9) and (9.10) are the well-known Belanger’s momentum equations.
9.2.2. Energy Loss in Hydraulic Jump in a Rectangular Channel
In a horizontal rectangular channel with the channel bed chosen as the datum, the total energies at sections 1 and 2, (Fig. 9.1 with θ = 0) are equal to the specific energies E1 and E2 at sections 1 and 2, respectively, i.e.,


q2
E1 = h1 + 2 g h12




q2 E2 = h2 + 2g h22

so that energy loss, ∆E = E1E2



q2

= h1 h2 + 2 g


1 = (h1h2) + 4






L

1

1

O




M









P




h 2

h 2




M

1

2

P




N










Q










F h 2

h

2 I




h1h2(h1

+ h2) G

2




1

J




h1

2

2







H




h2




K



(9.11)


(9.12)
(9.13)



320 IRRIGATION AND WATER RESOURCES ENGINEERING

















4h




2 h 4h

2h

+ h h 2

h 3

+ h 3

h

2h







=

1

2




2

1

1

2







1

2

1

2





































4h1 h2




























































































































h 3




h

3 + 3h 2 h − 3h h

2































=




2




1










1

2

1




2

















































4h1 h2































































































































(h




h )3






















































E =

2




1











































(9.14)










4h1 h2






















































































































E

[ h

+ (u

2 /2 g )] − [ h +

(u

2

/2 g)]
















Also,




=

1




1










2

2






















(9.15)






















[ h1 + u12 /2 g]


































E1


























































=







h [ 1 ( h

/ h )] +

( q 2 /2 g h

2 ) [ 1 − ( h

/ h ) 2

]













1







2

1













1




1

2














































( h /2) [ 2

+ F

2 ]


























































1










1































E2 − 2 ( h

/ h ) + F

2 [ 1 − ( h




/ h ) 2

]
























=













2




1

1




1




2













(9.16)




























2 + F12


































E1





























































Combining Eq. (9.8), (9.11) and (9.14), one can obtain


































E

8 F

4 + 20 F 2

− (8 F 2 + 1) 3 /2 − 1






















=

1










1




1




























(9.17)

























8 F12 ( 2 + F12 )































E1




















































Hence, for a supercritical Froude number F1 equal to 20, the energy loss ∆E is equal to 0.86 E1. This means that 86 per cent of the initial specific energy is dissipated. Because of this energy dissipating capability, hydraulic jump is widely used as an energy dissipator for spillways and other hydraulic structures. In a hydraulic jump, the mean kinetic energy is first converted into turbulence and then dissipated through the action of viscosity. Equation (9.17) can be rewritten as


E




(8 F

2 + 1) 3

/2 − 4 F

2

+ 1







2

=

1




1







...(9.18)




E1




8 F12 ( 2 + F12 )


































The term E2/E1 is called the efficiency of the jump.

Yüklə 18,33 Mb.

Dostları ilə paylaş:
1   ...   278   279   280   281   282   283   284   285   ...   489




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin