Aim.uz
Dalamber usuli (xarakteristik usul) Tor tebranish tenglamasi. Dalamber formulasi
Erkin tor tebranish tenglamasini qaraymiz. Buning uchun quyidagi bir jinsli tenglama yechiladi
boshlang'ich shartlar bilan
,
.
> restart;
Bir jinsli tenglama va uning yechimi:
> PDE:=diff(u(t,x),t,t)=a^2*diff(u(t,x),x,x);
pdsolve(PDE);
Yechimni Belgilanishi:
> u(t,x):=U1(x-a*t)+U2(x+a*t);
Boshlang'ich shartlar hisoblanishi:
> u_0(x):=subs(t=0,u(t,x))-F(x)=0;
ut_0(x):=subs(t=0,diff(u(t,x),t))-f(x)=0;
> int(diff(-a*U1(xi),xi)+diff(a*U2(xi),xi)-f(xi),xi=0..x);
> -a*(U1(x)-U2(x))+a*(U1(0)-U2(0))=int(f(xi),xi=0..x);
> -a*(U1(x)-U2(x))=int(f(xi),xi=0..x)+a*C;
Boshlang'ich funksiyalarni ifodalanishi:
> solve({U1(x)+U2(x)-F(x)=0,-a*(U1(x)-U2(x)) = int(f(xi),xi = 0 .. x)+a*C}, {U1(x),U2(x)});
> U1(x):=1/2*(a*F(x)-int(f(xi),xi = 0 .. x)-a*C)/a;
U2(x):=1/2*(a*F(x)+int(f(xi),xi = 0 .. x)+a*C)/a;
Umumiy yechimni ko'rinishi:
> u(t,x):=simplify(subs(x=x-a*t,U1(x))+(subs(x=x+a*t,U2(x))));
> u(t,x):=collect(1/2*(a*F(x-a*t)-int(f(xi),xi = 0 .. x-a*t)+a*F(x+a*t)+int(f(xi),xi = 0 .. x+a*t))/a, a);
Dalamber formulasi:
> u(t,x):=1/2*F(x-a*t)+1/2*F(x+a*t)+1/2*int(f(xi),xi = x-a*t .. x+a*t)/a;
funksiya tenglamani va boshlang'ich shartlarni qanoatlantirishini tekshiramiz.
Buning uchun funksiyani tenglama va boshlang'ich shartlarga qo'yamiz:
> simplify(diff(u(t,x),`$`(t,2)) - a^2*diff(u(t,x),`$`(x,2)));
eval(subs(t=0,u(t,x)));
Dostları ilə paylaş: |