KAROL PALKAis a young researcher, who obtained his Ph.D. from the University of Warsaw in 2009. In his thesis he studied the class of Q-homology planes, i.e. complex surfaces having rational homology of a plane. The main result was a major generalization of a theorem of Koras-Russell on contractible surfaces, which was a crucial step in the proof of the Linearization Conjecture for C* actions on C^3. Results from the thesis and his further research led to classification results for arbitrarily singular Q-homology planes. Palka collaborates with researchers in affine geometry in Japan, France and Canada. His research is now concentrated on the following three topics:
Analysis of singularities and fundamental groups of Q-homology planes of general type.
Study of homologically trivial complex threefolds, in particular the class of contractible threefolds, which is crucial for the Zariski Cancellation Conjecture.
Classification of closed C* embeddings into the plane and extension of the methods to analyze cuspidal curves in P^2.
Palka plans a 6-month visit in RIMS, Kyoto, Japan to collaborate with Prof. Masayoshi Miyanishi and Prof. Takahashi Kishimoto (Saitama University) on contractible threefolds and methods of the log Minimal Model Program. He plans a 4-month visit in Dijon, France to collaborate with prof. Adrien Dubouloz on contractible threefolds. He also plans a 3-month visit in Montreal, Canada to continue his collaboration with prof. Peter Russell on plane C* embeddings and on the Coolidge-Nagata conjecture.
A 1 year postdoctoral position will be opened for applicants to work on the subject of complex affine geometry.