REFERENCES
Aafi, N. E., Brhada, F., Dary, M., Maltouf, A.F., & Pajuelo, E. (2012). Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC 541. International Journal of Phytoremediation, (14), 261–274.
Abramowicz, D. A. (1995). Aerobic and Anaerobic PCB Biodegradation in the Environment. Proceeding from Conference on Biodegradation: Its Role in Reducing Toxicity and Exposure to Environmental Contaminants, Triangle Park, North Carolina, June, 1995.
Aislabie, J., & Lloyd-Jones, G. (1995). A Review of Bacterial Degradation of Pesticides, Australian Journal of Soil Research, 33 (6), 925-942.
Allen, E. B., Allen, M. E., Egerton-Warburton, L., Corkidi, L., & Gomez-Pompa, A. (2003). Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecological Applications, (13), 1701-1717.
Anderson, C. W. N., Brooks, R. R., Chiarucci, A., LaCoste, C. J., Leblanc, M., Robinson, B. H., Simcock, R., & Stewart, R. B. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67(1-3), 407–415.
Arbeli, Z., & Fuentes, C. L. (2007). Accelerated biodegradation of pesticides: An overview of the phenomenon, its basis and possible solutions and a discussion on the tropical dimension. Crop Protection, (26), 1733-1746.
Auger, C., Han, S, Appanna, V. P., Thomas, S. C., Ulibarri, G., & Appanna, V. D. (2013). Metabolic reengineering invoked by microbial systems to decontaminate aluminium: Implications for bioremediation technologies. Biotechnology Advances, (31), 266–273.
Azcon, R., Peralvarez, M. D. C., Roldan, A., & Barea, J. M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi-contaminated soil alleviate metal toxicity in plants. Microbial Ecology, (59), 668–677.
Azcon-Aguilar, C., & Barea, J. M. (1992). Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In M. F. Allen (Ed.), Mycorrhizal functioning, an integrative plant-fungal process (pp. 163–198). New York: Routledge, Chapman & Hall Inc.
Badawi, N., Ronhede, S., Olsson, S., Kragelund, B. B., Johnsen, A. H., Jacobsen, O. S., & Aamand, J. (2009). Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environmental Pollution, (157), 2806-2812.
Barbier, E. B., Burgess, J. C. & Folke, C. (1994). Paradise lost? The ecological economics of biodiversity. Earthscan.
Barraga, n-Huerta B. E., Costa-Perez. C., Peralta-Cruz, J., & Barrera-Corte, J. (2007) Biodegration of organochlorine pesticides by bacteria grown in microniches of the porus structure of green bean coffee. International Biodeterioration Biodegradation, (59), 239-244.
Bernhoft, R. A. (2012). Mercury toxicity and treatment: a review of the literature. Journal of Environmental Public Health.
Bever, J. D. (2002). Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, (244) 281–290.
Bhatiya, D., & Malik, D. K. (2011). Plant-Microbe Interaction with Enhanced Bioremediation. Research Journal of Biotechnology, 6 (4), 1-8.
Boominathan, R., Saha-Chaudhury, N. M., Sahajwalla, V., & Doran, P. M. (2004). Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnology Bioengineering, 86(3), 243–250.
Brewer, E. P., Saunders, J. A., Angle, J. S., Chaney, R. L., & McIntosh, M. S. (1999). Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theoretical and Applied Genetics, 99(5), 761–771.
Briceno, G., Palma, G., & Duran, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, (37), 233-241.
Brooks, R. R., Chambers, M. F., Nicks, L. J., & Robinson, B. H. (1998). Phytomining. Perspectives, 3(9), 359–361.
Brunetti, G., Farrag, K., Rovira, P. S., Nigro, F., & Senesi, N. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, (160), 517–523.
Byung, T. O., Patrick, J., Shea R.A., Drijber, G., Vasilyeva, K. & Gautam, S. (2003). TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation, (14), 309–319.
Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment, Environmental Science and Pollution Research, (12), 34-48.
Clemens, S., Palmgren, M. G., & Kranmer, U. A. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–314.
Cohen, M. F., Yamasaki, H., & Mazzola, M. (2004). Bioremediation of soil by plants microbe system. International Journal of Green Energy, 1(3), 301-312.
Cox, L., Walker, A., & Welch, S. J. (1996). Evidence for the accelerated degradation of isoproturon in soils. Pesticide Science, (48), 253-260.
Cuenca, G., & Lovera, M. (1992). Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Canadian Journal of Botany, (70), 73-79.
Dalton, H. & Stirling, D. I. (1982). Co-metabolism, Philosophical transactions of the Royal Society. Series B, Biological Science, (297), 481-495.
Das, S., & Singh, D. K. (2006) Purification and characterization of phosphotriesterases from Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL11. Canadian Journal of Microbiology, (52), 157-168
De Schrijver, A, & De Mot, R. (1999). Degradation of pesticides by Actinomycetes. Critical Reviews in Microbiology, (25), 85-119.
Dick, J. (1991). Forest land use, forest use zonation and deforestation in Indonesia: a summary and interpretation of existing information. Background paper to UNCED for the state Ministry for Population and Environment (KLH) and the Environmental Impact Management Agency (BAPEDAL).
Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009) Phytoremediation of inorganics: realism and synergies. International Journal of Phytoremediation, (11), 97-114.
Dubey, K. ., & Fulekar, M. H. (2013) Rhizoremediation of pesticides: mechanism of microbial interaction in mycorrhizosphere. International Journal of Advancements in Research & Technology, 2 (7), 2278-7763.
Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23(2), 97–114.
Eapen, S., Singh, S., & D'Souza, S. F. (2007). Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnology Advances, (25), 442–451.
Eviner, T., & Hawkes, C. V. (2008). Embracing Variability in the Application of Plant–Soil Interactions to the Restoration of Communities and Ecosystems Valerie. Restoration Ecology, 16 (4), 713–729.
Fenlon, K. A., Jones, K. C., & Semple, K. T. (2007). Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils. Journal of Environmental Monitoring, (9), 510-515.
Finley, S. D., Broadbelt, L. J., & Hatzimanikatis, V. (2010). In Silico Feasibility of Novel Biodegradation Pathways for 1,2,4-Trichlorobenzene, BMC Systems Biology, 4.(7), 4-14.
Floriane, S. S., Nicolau, E., Gregory, F., Jouanneau, Y., & Marchal, R. (2009). Biodegradability of 2-ethylhexyl nitrate (2-EHN), a cetane improver of diesel oil. Biodegradation, (20), 85-94.
Fournier, J. C., Soulas, G., & Parekh, N. R. (1996). Main microbial mechanisms of pesticide degradation in soils In: J., Tarradellas, G., Bitoon, & D.L. Rossel, (Eds). Soil ecotoxicology. Pp. 85-115.
French, C. E., Rosser, S. J., Davies, G. J., Nicklin, S. & Bruce, N. C. (1999). Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase, Nature Biotechnology, (17), 491–494.
García, R., & Báez, A. P. (2012). Atomic absorption spectrometry (AAS). In M. A. Farrukh (Ed.), Atomic Absorption Spectroscopy (pp. 1-12).In Tech. http://www.intechopen.com/books/atomic-absorptionspectroscopy/atomic absorption-spectrometry-aas.
Gerhardt, K. E., Huang, X. D., Glick, B. R. & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, (176), 20-30.
Giri, K ., & Rai, J.P.N. (2012). Biodegradation of endosulfan isomers in broth culture and soil microcosm by Pseudomonas fluorescens isolated from soil. International Journal of Environmental Studies, 69(5), 729-742.
Giri, K., Mishra, G., Pandey, S., Verma, P. K. Kumar, R., & Bisht, N. S. (2014). Ecological degradation in Northeastern coal fields: Margherita Assam. International Journal of Science, Environment and Technology, 3 (3), (In Press).
Giri, K., Rawat A.P., Rawat, M., & Rai, J.P.N. (2014). Biodegradation of Hexachlorocyclohexane by Two Species of Bacillus Isolated from Contaminated Soil. Chemistry and Ecology, 30 (2), 97-109.
Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming, Proceedings of the National Academy of Sciences U.S.A., 96(11), 5973–5977.
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., et al. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, (1), 1-22.
Gooddy, D. C., Chilton, P. J. & Harrison, I. (2002). A field study to assess the degradation and transport of diuron and its metabolites in a calcareous soil. Science of Total Environment, (297), 67-83.
Greenberg, B. M. (2006). Development and field tests of a multi-process phytoremediation system for decontamination of soils. Canadian Reclamation, (1), 27-29.
Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem Properties. 2nd edition. John Wiley & Sons, New York.
Guerinot, M. L., & Salt, D. E. (2001). Fortified foods and phytoremediation. two sides of the same coin. Plant Physiology, 125(1), 164–167.
Hangler, M., Jensen, B., Ronhede, S., & Sorensen, S. R. (2007). Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiology Letters, (268), 254-260.
Hawthorne, S. B., Yang, Y. & Miller, D. J. (1994). Extraction of organic pollutants from environmental solids with sub and supercritical water. Analytical Chemistry, (66), 2912-2920.
Hopper, M. L. (1996). Solid phase partition column technology in Emerging strategies for pesticide analysis. In. T. Cairns and J. Sherma (Ed.), CRC Press, Boca Raton, FL, pp. 39-50.
Hrynkiewicz, K., & Baum, C. (2012). The potential of rhizosphere microorganisms to promote the plant growth. In A. Malik, & E. Grohmann (Eds.), Environmental Protection Strategies for Sustainable Development, Strategies for Sustainability (pp. 35-64). Springer Science + Business Media B.V. DOI 10.1007/978-94-007-1591-2-2
Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein mt1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollution, (223), 957–68.
Hseu, Z. Y., Chen, Z. S., Tsai, C. C., Tsai, C. C., Cheng, S.-F., Liu, C.-L., & Lin, H. T. (2002). Digestion methods for total heavy metals in sediments and soils. Water Air and Soil Pollution, 141(1-4), 189–205.
Huang, X. D., El-Alawi, Y. S., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemistry Journal, (81), 139-147.
Hussain, S., Arshad, M., Saleem, M., & Khalid, A. (2007a). Biodegradation of α and β-endosulfan by soil bacteria. Biodegradation, (18), 731-740.
Hussain, S., Siddique, T., Arshad, M., & Saleem, M. (2009a). Bioremediation and phytoremediation of pesticides: recent advances. Critical Reviews in Environmental Science and Technology, (39), 843-907.
Hussain, S., Sorensen, S. R., Devers-Lamrani, M., El-Sebai, T., & Martin-Laurent, F. (2009b). Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere, (77), 1052-1059.
INSA, (2011). Hazardous metals and minerals pollution in india. Indian National Science Academy, Bahadurshah Zafar Marg, New Delhi, Angkor Publishers (P) Ltd., Noida. pp. 1- 24.
Jeneper, M. L., & Hayao, S. (2005). Comparison of the acid combinations in icrowave-assisted digestion of marine sediments for heavy metal analyses. Analytical Science, 21(10), 1181-1184.
Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D.,et al. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, (31), 95-107.
Joshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental Science and Technology, (43), 5884–5889.
Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, (99), 4732–4741.
Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.
Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: a beneficial plant–microbe interaction. Molecular Plant Microbe Interaction, (17), 6-12.
Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., Lal, S., Meer, J. R., Holliger, C., & Lal, R. (2002) Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90. Applied and Environmental Microbiology, (68), 6021-6028,
Lal, R., Dogra, C., Malhotra, S., Sharma, P., and & Pal, R. (2006) Diversity, Distribution and Divergence of lin genes in hexachlorocyclohexane degrading sphingomonads. Trends in Biotechnology, (24), 121-129.
Leisinger, T. Hutter, R. Cook, A. M., & Nuesch, J. (1981). Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, New York.
Li, W. C., Ye, Z. H., & Wong, M. H. (2010). Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant Sedum alfredii. Plant Soil, (326), 453–467.
Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction, Journal of Environmental Quality, 30(6), 1919–1926.
Luo, S. L., Chen, L., Chen, J. I., Xiao, X., Xu, T. Y., Wan, Y., et al. (2011). Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, (85), 1130-8.
Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., et al. (2012). Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, (93), 1745–1753.
Macek, T., Mackova, M., & Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation, Biotechnology Advances, (18), 23–34.
Maria, S. D., Rivelli, A. R., Kuffner, M., Sessitsch, A., Wenzel, W. W., Gorfer, M., et al. (2011). Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere, (84), 1256–1261.
Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.
Mathew, G. A. (2006). Pesticides: Health. Safety and the Environment. Blackwell Publishing.
Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants, Current Opinion in Plant Biology, (3), 153-162.
Meirer, F., Singh, A., Pepponi, G., Streli, C., Homma T., & Pianetta. (2010). Synchrotron radiation-induced total reflection X-ray fluorescence analysis. Trends in Analytical Chemistry, 29(6), 479–496.
Mohammed, A. S., Kapri, A., & Goel, R. (2011). Heavy metal pollution: source, impact, and remedies. In M. S. Khan, A. Zaidi, R. Goel & J. Musarrat (Eds.), Biomanagement of Metal-Contaminated Soils (pp 1-28). Springer Netherlands.
Nerud, F., Baldrian, P., Gabriel, J. & Ogbeifun, D. (2003). Nonenzymic degradation and decolorization of recalcitrant compounds. In, V., Sasek, J.A., Glaser, P. Baveye, (Eds). Utilization of bioremediation to reduce soil contamination: Problems and solutions. Springer, Dordrecht, Pp. 127-133.
Nieuwenhuize, J., Poley-Vos, C. H., Van den, Akker, A. H., & Van Delft, W. (1991). Comparison of microwave and conventional extraction techniques for the determination of metals in soil, sediment, and sludge samples by atomic spectrometry. Analyst, 116(4), 347–51.
Novick, N. J. & Alexander, M. (1985). Cometabolism of low concentrations of propachlor, alachlor and cycloate in sewage and lake water. Applied and Environmental Microbiology, (49), 737-743.
Pal, R., & Rai, J. P. N. (2010). Phytochelatins: Peptides Involved in Heavy Metal Detoxification. Applied Biochemistry and Biotechnology, 160(3), 945–963.
Parker, M. A., Malek, W., & Parker, I. M. (2006). Growth of an invasive legume is symbiont limited in newly occupied habitats. Diversity and Distributions, (12), 563-571.
Patrick, L. (2006). Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternate Medical Revives, (11), 114–27.
Pieuchot, M., PerrinGanier, C., Portal, J. M. & Schiavon, M. (1996). Study on the mineralization and degradation of isoproturon in three soils. Chemosphere, (33), 467-478.
Pilon-Smits, E. (2005). Phytoremediation. Annual Reviews in Plant Biology, (56), 15-39.
Pilon-Smits, E. A. H., Hwang, S., Lytle, C. M., Zhu, Y., Tai, J. C., Bravo, R. C., Chen, Y., Leustek, T. & Terry, N. (1999). Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiology, 119(1), 123–132.
Pilon-Smits, E., & Pilon, M. (2002). Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences, 21(5), 439– 56.
Pinto, C. L. R., Caconia, A., & Souza, M. M. (1987). Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. Water Science and Technology, 19 (10), 89–101.
Pollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. C. (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences. 21(6), 539–566.
Pulford, I., & Watson, D. C. (2003). Phytoremediation of heavy-metal-contaminated land by Trees-a review, Environment International, (29), 529-540.
Pywell, R. F., Bullock, J. M., Roy, D. B. Warman, L. I. Z., Walker, K. J., & Rothery, P. (2003). Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology, (40), 65–77.
Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances 30(6), 1562–1574.
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181.
Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O. S., & Sorensen, S. R. (2005). Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters. Pest Management Science, (61), 829-837.
Rauser, W. E. (1999). Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics, 31(1), 19–48.
Rawat, A.P., Giri, K., & Rai J.P.N. (2014). Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multi-metal system. Environmental Monitoring and Assessment, 186(3):1679-1687.
Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, (pp. 193–229). New York, US A: J. Wiley and Sons.
Requena, N., Perez-Solis, E., Azcon-Aguilar, C., Jeffries, P. & Barea, J. M. (2001). Management of indigenous plant microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, (65) pp. 495.
Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1-2), 305–339.
Richardson, M. 1998. Pesticides - Friend or foe? Water Science and Technology, (37), 19-25.
Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N. & Pohi, C. (1996). Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, (68), 1033-1039.
Robinson, B. H., Chiarucci, A., Brooks, R. R., Petit, D., Kirkman, J. H., Gregg, P. E. H., & Dominicis, V. D. (1997). The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration, 59(2), 75–86.
Ross, (1996). Conditionality and logging reform in the tropics. In: R. O. Keohane, and M A. Leve (Ed.), Institutions for Environmental Aid: Problems and Prospects, eds. Pp 167-197. MIT Press, Cambridge Massachusetts.
Rugh, C. L., Senecoff, J. F., Meagher, R. B., & Merkle, S. A., (1998). Development of transgenic yellow poplar for mercury phytoremediation, Nature Biotechnology, (16), 925-928.
Rungwa, S., Arpa, G., Sakulas, H., Harakuwe, A., & Timi, D. (2013). Phytoremediation − An eco-friendly and sustainable method of heavy metal removal from closed mine environments in papua new guinea. Procedia Earth and Planetary Science, 6, 269– 277.
Sacki, M., & Toyota, K. (2004). Effect of bensulfuron-methyl (a sulfonylurea herbicide) on the soil bacterial community of a paddy soil microcosm. Biology and Fertility of Soils, (40), 110-118.
Scancar, J., Milacic, R., & Horvat, M. (2000). Comparison of various digestion and extraction procedures in analysis of heavy metals in sediments. Water Air and Soil Pollution, 118(1-2), 87–99.
Shi, J. Y., Lin, H. R., Yuan, X. F., Chen, X. C., Shen, C. F., & Chen, Y. X. (2011). Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules. (16), 1409–1417.
Shi, S. J., & Bending, G. D. (2007). Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil. FEMS Microbiology Letters, (269), 110-116.
Singer, A. C., Thompson, I. P., & Bailey, M. J. (2004). The tritrophic trinity: a source of pollutant- degrading enzymes and its implications for phytoremediation. Current Opinion in Microbiology, (7), 239-244.
Singh, D. K. (2008). Biodegradation and bioremediation of pesticides in soil: concept, method and recent developments. Indian Journal of Microbiology, (48), 35-40.
Singh, J. S., Singh, S. P., & Gupta, S. R. (Eds.). (2010). Ecology environment and resource conservation. Anamaya Publishers, New Delhi.
Society for Ecological Restoration, International Science and policy Working Group 2004. www.ser.org
Subhas, & Singh, D. K. (2003) Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11. Canadian Journal of Microbiology, (49),101-109.
Sun, J. Q., Huang, X., Chen, Q. L., Liang, B., Qiu, J. G., Ali, S. W., & Li, S. P. (2009). Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1, 2-dioxygenase gene from these strains. World Journal of Microbiology and Biotechnology, (25), 259-268.
Susarla, S., Medina, V. F., & McCutcheon, S.C.(2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, (18), 647–658.
Sutherland, T. D., Horne, I., Harcourt, R. L., Russel, R. J., & Oakeshott, J. G. (2002). Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. Journal of Applied Microbiology, (93), 380-389.
Tu, Q., Wang, T., & Welch, C. J. (2010). High throughput metal screening in pharmaceutical samples by ICP-MS with automated flow injection using a modified HPLC configuration. Journal of Pharmaceutical and Biomedical Analysis, 51(1), 90–95.
Turnbull, G. A., Ousley, M., Walker, A., Shaw, E., & Morgan, J. A. W. (2001). Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appled and Environmental Microbiology, (67), 2270-2275.
Van Huysen, T., Terry, N. & Pilon-Smits, E. A. H. (2004). Exploring the selenium hytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine-gamma-synthase. International Journal of Phytoremediation, 6(2), 111–118.
Visser, S., Danielson, R. M., & Parkinson, D. (1991). Field performance of Elaeagnus commutata and Shepherdia canadensis inoculated with soil containing Frankia and vesicular-arbuscular mycorrhizal fungi. Canadian Journal of Botany, (69), 1321–1328.
Wang, T., Jia, X., & Wu, J. (2003). Direct determination of metals in organics by inductively coupled plasma atomic emission spectrometry in aqueous matrices. Journal of Pharmaceutical and Biomedical Analysis, 33(4), 639–646.
Weir, K .M., Sutherland, T. D., Horne, I., Russell, R. J., & Oakeshott, J. G. (2006). A Single Monooxygenase, Ese, Is Involved in the Metabolism of the Organochlorides Endosulfan and Endosulfate in an Arthrobacter sp. Applied and Environmental Microbiology, (72), 3524-3530.
Wu, S. C., Wong, C. C., Shu, W. S., Khan, A. G., & Wong, M. H. (2011a). Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: A field study. International Journal of Phytoremediation, (13), 61–74.
Yang, J., He, M., & Wang, G. (2009). Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp. Q5-1. World Journal of Microbiology and Biotechnology, (25) 1579–1587.
Yang, Q., Tu, S., Wang, G., Liao, X., & Yan, X. (2012). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. International Journal of Phytoremediation, (14), 89–99.
Zhang, J. L. & Qiao, C. L. 2002. Novel approaches for remediation of pesticide pollutants. International Journal of Environmental Pollution, (18), 423-433.
Zhao, F. J., & McGrath, S. P. (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12(3), 373–380.
Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, (33), 406-413.
Dostları ilə paylaş: |