Mavzu: Chiziqli uzluksiz funksiоnallar. Nоrmalangan fazоda chiziqli funksiоnallar. Хan-Banaх tеоrеmasi. Ma’lumki, chiziqli funksional va uning nollari 12-ma’ruzada o‘rganilgan edi. 14-ma’ruzada esa qism fazoda aniqlangan chiziqli funksionalni p qavariq funksionalga "bo‘ysungan" holda butun fazogacha chiziqli davom ettirish mumkinligi haqidagi Xan-Banax teoremasi isbotlangan edi. Endi biz chiziqli funksionalning normasini saqlagan holda uni butun fazogacha davom ettirish mumkinligi haqidagi Xan-Banax teoremasini isbotlaymiz, hamda funksional fazolarda chiziqli uzluksiz funksionallarning umumiy ko‘rinishidan foydalanib, asosiy funksional fazolarga qo‘shma fazolarni izomorfizm aniqligida topamiz.
23.1. Chiziqli funksionallar Agar operatorning qiymatlari sonlardan iborat bo‘lsa, bunday operator funksional deyiladi . Agar chiziqli fazoda aniqlangan funksional uchun quyidagi shartlar bajarilsa
1) ; additivlik
2) bir jinslilik
ga chiziqli funksional deyiladi.
23.1-ta’rif.Agar ixtiyoriy uchun shunday mavjud bo‘lib, tengsizlikni qanoatlantiruvchi barcha lar uchun tengsizlik bajarilsa, funksional nuqtada uzluksiz deyiladi. Agar funksional ixtiyoriy nuqtada uzluksiz bo‘lsa, uzluksiz funksional deyiladi. 23.1-ta’rifga teng kuchli bo‘lgan quyidagi ta’rifni keltirishimiz.
23.2-ta’rif.Agar nuqtaga yaqinlashuvchi ixtiyoriy ketma-ketlik uchun bo‘lsa, u holda funksional nuqtada uzluksiz deyiladi. - kompleks sonlar to‘plami ( - haqiqiy sonlar to‘plami) Banax fazosi bo‘lganligi uchun 11-§ da chiziqli operatorlar uchun o‘rnatilgan teorema va tasdiqlar chiziqli funksionallar uchun ham o‘rinli bo‘ladi.
23.1-teorema. chiziqli normalangan fazoda aniqlangan chiziqli funksional biror nuqtada uzluksiz bo‘lsa, u holda bu chiziqli funksional butun fazoda uzluksiz.