Mavzu Algoritmlar samaradorligini tahlil qilish. Reja Samarado-hozir.org
(3)T: Agar algoritm polinomial bajarilish vaqtiga ega bo'lsa, u samarali deb ataladi.
Lekin, polinomial vaqt d ning katta qiymatlarida yaxshi natija bermasligi mumkin, masalan d>=100 holatda bu son juda katta bo’ladi, natijada polinomial bajarilish vaqti kattalashib ketadi. Algoritm ishlayveradi. Bu xolda N^d faqat chegara vazifasini o’taydi.
Polinomial vaqtga ega bo'lgan algoritmlar mavjud bo'lgan masalalar uchun bu algoritmlar deyarli har doim n, n*log n, n^2 yoki n^3 kabi o'rtacha o'sish sur'ati bilan ko'paytuvchilarga mutanosib ravishda ishlaydi. Va aksincha, Polinomial vaqtga ega bo'lmagan algoritmli masalalar uchun bajarilish vaqti juda ham kattalashib ketadi, uni baholash noma'lum bo’ladi, odatda bunday masalalarni yechish juda murakkab bo'lib chiqadi. Umuman olganda, bunday baholashlar ba’zi masalalarda darajaning yoki koeffitsientlarning kattaligi sababli yaxshi natija bermaydi, algoritm yaxshi bo’lsa ham. Ajablanarlisi shuki, aksariyat hollarda polinomial vaqtni matematik aniqlash algoritmlarning samaradorligi va real hayotdagi masalalarni hal qilish bo'yicha kuzatishlarimiz bilan mos keladi. Bunday masalalarni polinomial yechish mumkin bo’lgan masalalar deyiladi. Demak, 3-ta’rifni ma’lum ma’noda talabga javob beruvchi ta’rif desak boladi. U xolda Polinomial vaqtga ega bo'lmagan algoritmlarni qayta ko’rib chiqish kerak.
Polinomial vaqtga ega bo'lgan algoritmlarni ishlab chiqish nima ucgun zarurligini quyidagi jadval ma’lumotlarini tahlil qilib bilish mumkin. Algoritmlarning ishlash vaqtlari
n=
n
n*logn
n^2
n^3
1,5^n
2^n
n!
10
30
18min
10^25y
50
11min
36y
Juda kop
100
12892y
10^17y
----
1000
18min
---
----
----
10000
2min
12kun
--
---
---
100000
3soat
32y
---
---
---
1 mln.
20s
12kun
31710y
---
---
---
Asimptotik yuqori chegaralar
Algoritmning samaradorligi bu algoritmni qo’llash uchun qancha kuch talab qilinishini yoki uning qiymati qanchaligini bildiradi. Bunday qiymat har xil mezonlar bilan o’lchanishi mumkin. Bu erda ulardan ikkitasini: vaqt va fazo miqdorinini samaradorlik mezonlari sifatida olinadi. Bunda vaqt mezoni fazodan muhimroq hisoblanadi, shuning uchun samaradorlik asosan ma’lumotlarnu qayta ishlashga ketgan vaqtga nisbatan olinadi. Samaradorlikni baholash uchun mantiqiy birliklar, ya’ni fayl yoki massivning o’lchami n va qayta ishlash uchun ketgan vaqt miqdori t olinadi.
Agar n o’lchov va t vaqt orasida t1=c*n chiziqli bog’liqlik bo’lsa, u holda xajmni bir necha marta, hususan 5 marta, oshirish natijasida, ularni qayta ishlashga ketgan vaqt ham 5 marta oshadi ya’ni n2=5*n bo’lsa, t2=5*t o’rinli bo’ladi. Yoki, agar bog’liqlik t1=logn bo’lsa, u holda n 2 marta oshirilsa vaqt sarfi bor yo’g’i bir birlikka ortadi, ya’ni t2=log2*n=t1+1 bo’ladi. n va t ni bog’liqligini ifodalovchi funksiya odatda murakkab bo’ladi va bunday funksiyani hisoblash katta hajmdagi ma’lumotlarni qayta ishlashda juda muhim hisoblanadi. Hosil qilingan f-ya berilgan funksiyaning tarkibiy samaradorligini bildiradi.Shunga qaramay bu yaqinlashish funksiyaga yaqin hisoblanadi, va katta hajmdagi ma’lumotlar uchun originalga juda yaqin bo’ladi. Samaradorlikning bu o’lchovi assimtotik yaqinlashuvchi o’lchov deyiladi va u samaradorlikni aniqlovchi funksiya ma’lum xadlarini hisobga olganda yoki samaradorlikni aniq hisoblas qiyin, yoki mumkin bo’lmaganda qo’llaniladi.