Mühazirə otağı/Cədvəl 41 Mehseti str. (Neftchilar campus), Room #314 old. 15: 30-18: 30



Yüklə 68,73 Kb.
tarix03.01.2022
ölçüsü68,73 Kb.
#51053
növüMühazirə


Ümumi məlumat

Fənnin adı, kodu və kreditlərin sayı

Math.Analysis-1, (Calculus) MATH 101, 3 credits


Departament

Mathematics

Proqram (bakalavr, magistr)

Undergraduate

Tədris semestri

Spring,2016

Fənni tədris edən müəllim (lər)

PHD. Seymur Rzayev (Rzaev,S.F.)

E-mail:

srzayev@khazar.org, rzseymur@gmail.com

Telefon:

(+99451)935-10-44

Mühazirə otağı/Cədvəl

41 Mehseti str. (Neftchilar campus), Room #314 old. 15:30-18:30




Konsultasiya vaxtı




Prerekvizitlər

Precalculus: MATH 098

Tədris dili

Azeri

Fənnin növü

(məcburi, seçmə)

Məcburi

Dərsliklər və əlavə ədəbiyyat

1.Anton Howard “Calculus with Analytic Geometry”, 4th ed., 1992

2.R.V.Hüseynov, T.Q.Məlikov Birdəyiişənli funksiyaların diferensial hesabı



3. R.H.Məmmədov “Ali riyaziyyat kursu”,2005

4.Harshbarger Ronald I. “Calculus with Applications”, 2th ed., 1993

5.Lial Marqaret L. “Calculus with Applications”, 5th ed., 1993

Kursun vebsaytı

www.calculus. org, www.math.hmc.edu/calculus/tutorials

Tədris metodları

Mühazirə




Qrup müzakirəsi




Praktiki tapşırıqlar




Praktiki məsələnin təhlili




Digər




Qiymətləndirmə

Komponentləri

Tarix/son müddət

Faiz (%)

Aralıq imtahanı




30

Praktiki məsələ







Fəallıq




15

Tapşırıq və testlər




15

Kurs işi (Layihə)







Prezentasiya/Qrup müzakirə







Final imtahanı




40

Digər







Yekun




100

Kursun təsviri

Müstəvi üzərində düzxəttin və çevrənin tənlikləri öyrənilir, funksiya və onunla bağlı müəyyən anlayışlar verilir. Törəmənin köməyilə funksiyanın maksimum və minimum təyin edilir, praktikada rast gəlinən bir sıra məsələlərə tətbiqi göstərilir.


Kursun məqsədləri

• Təhsil fakültəsinin riyaziyyat üzrə təhsil alan tələblərinə tədris kursunun cavab verməsi.

• Praktikada rast gəlinən kifayət qədər ümumi olan funksiyaların sonsuz kiçilənlər metodu, başqa sözlə limitlər nəzəriyyəsi metodu ilə öyrənilməsi və eyni zamanda riyaziyyatın öyrənilməsində müəyyən mənada fundamentin yaradılması.

• Tələbələrin sonrakı inkişafında müəyyən bazanın yaradılması.

• Tələbələrə akademik yardım göstərmək, onların öz potensialını realizə etmə imkanını daha da təkmilləşdirmək.



Tədrisin (öyrənmənin) nəticələri


Bütün kurs boyu tələbələr inkişafda olmalı və aşağıdakı bacarıq və vərdişlərini qoruyub saxlamalıdırlar:

• Analitik düşünmə

• Ardıcıllığın və funksiyanın limitini tapa bilməli

• Funksiyaları analiz etməyi, funksiyaların limitini tapmağı, onların kəsilməzliyini təyin etməyi bacarmalı

•Müxtəlif funksiyaların törəməsinin tapılması

•Törəmənin köməyilə funksiyanın maksimum və minimumunun təyini

•Mütləq ekstremumun tapılması

• Ekstremum anlayışı ilə bağlı tətbiqi məsələləri həll etməyi bacarmalı



Qaydalar (Tədris siyasəti və davranış)

Dərslərdə iştirak etmək:

Tələbələrdən bütün otaqlara öz təhsilinin bir hissəsi kimi diqqət göstərməsi və üzürlü səbəbdən dərsdə iştirak edə bilmədikdə (xəstəlik, ailə üzvlərindən birini itirdikdə) onlardan dekanlığı məlumatlandırmaq tələb olunur.

Ümumiyyətlə, tələbənin 20% dərsdə iştirak etməməsi onun imtahandan kənarlaşdırılmasına gətirib çıxarır.

Gecikmə:

Əgər tələbə dərsə fənn müəllimindən sonra daxil olarsa, onda onun otağa daxil olması və tələbələri narahat etməsi qadağan olunur. Bununla belə həmin tələbə ikinci qoşa saatda iştirak edə bilər.



Dərsə hazırlaşma

Kursun stukturu onu fərdi öyrənməyə imkan verir və sinifdən kənar dərsə hazırlıq üçün olduqca mühümdür. Mühazirə materialı mətndə müzakirə olunan əsas məsələlər üzərində qurulacaq. Dərsdən əvvəl seçilmiş fəsillərin oxunuşu və onlarla tanışlıq mühazirənin başa düşülməsində sizə böyük köməyi dəyəcəkdir. Mühazirədən sonra siz apardığınız qeydləri öyrənməli və hər fəsilin axırında verilən uyğun məsələlər və yoxlama sualları üzərində çalışmalısınız.

Semestr ərzində çoxlu sayda yoxlamalar olacaqdır. Bu yoxlamalar dərs periodu ərzində keçiriləcəkdir.

İmtahanda iştirak qaydası

Əgər siz yekun imtahanda üzürlü səbəbdən iştirak edə bilməmisinizsə, onda siz imtahanı növbəti müddətdə verməlisiniz. Əgər imtahanda iştirak etməmək üçün əlinizdə tutarlı əsas olmasa, onda imtahanın nəticəsi sıfır kimi qiymətləndiriləcəkdir.



İmtahan (keçmə / kəsilmə )

Tələbənin imtahanda uğur qazanması üçün onun göstəricisi ən aşağısı 60 % olmalıdır. Onun imtahanda müvəffəqiyyət qazanmadığı halda növbəti semestr və ya ildə onun kursu təkrar keçməsinə ehtiyac qalır.



Aldadıcı / xoşagəlməz hərəkətlər

Yoxlama tapşırığı, Aralıq semestr imtahanı və Yekun imtahan ərzində aldadıcı və ya digər xoşagəlməz hərəkətlər tələbənin imtahandan kənarlaşdırılmasına gətirib çıxarır. Bu halda heç bir şeyə baxmayaraq avtomatik olaraq tələbə sıfır (0) alır.



Professionalizmə doğru

Dərs saatı ərzində tələbə akademik yaradıcı və professional mühitə aparan yolla hərəkət etməlidir. Yolverilməz diskussiyalar və qeyri etik hərəkətlər birbaşa qadağan olunur.



Kursun uğurlu alınması

Kursun uğurla başa çatmasından ötrü, tələbələr dərs saatı ərzində aktiv iştirak etməli və diskussiyalara cəlb olunmalıdır.



Öyrənmə və Öyrətmə üsulları

Kursun aktiv öyrənilməsi prosesinə üstünlük verilir. Mühazirələr, diskussiyalar, çalışmalar, tipik nümunələr.



Cədvəl (dəyişdirilə bilər)

Həftə

Tarix

(planlaşdırılmış)

Fənnin mövzuları


Dərslik/Tapşırıqlar

1

11. 02.16


Təkliflər və məntiqi simvollar.Çoxluq anlayışı.Koordinat müstəvisi və qrafiklər. Düzxəttin və çevrənin tənlikləri


[2],səh. 6-21

2

18 02.16


Ardıcıllıq və onun limiti. Yığılan və dağılan ardıcıllıqlar.Monoton ardıcıllıqlar. Monoton ardıcıllığın limitinin varlığı

[2], səh.22-40

3

25. 02.16


Funksiya anlayışı. Funksiyanın təyin və qiymətlər oblastı. Cüt və tək funksiyalar. Funksiyaların qrafiki. Tərs funksiya. Tərs funksiyanın tapılması.

[2],səh.40-60


4

03.03.16


Funksiyanın limiti anlayışı. Limitin varlığı, sonsuzluqda limit, bəzi əsas limitlər. Əsas elementar funksiyalar. Guiz-1

[1],səh.108-120, 129,140-149

5

10 03.16




Kəsilməz funksiya anlayışı. Kəsilmə nöqtələri. Kəsilməz funksiyaların bəzi xassələri. Mürəkkəb funksiyaların kəsilməzliyi. Aralıq qiymət haqqında teorem.

[2],səh.67-103,

6

17 03.16


Törəmə. Törəmənin hesablanması üsulları. Cəmin, hasilin və nisbətin törəməsi. Törəmənin həndəsi mənası. Funksiyanın diferensialı.

[1], səh.129-160




20.03-16 27.03.16

Novruz Holiday




7

31 03.16


Guiz-2

Triqonometrik funksiyaların törəməsi. Mürəkkəb funksiyların törəməsi. Diferensialın invariantlıq xassəsi.



[1], səh.201-212


8

07. 04.16


Aralıq imtahanı.

Funksiyanın cəbri tərsinin törəməsi. Yüksək tərtibdən törəmə anlayışı.



[1],səh.193-199

9


14.04.16


Qeyri-aşkar törəmə. Qeyri-aşkar törəmə alma metodu.

[1],səh.214-221, 228-229

10

21.04.16


Artan və azalan funksiyalar. Artma və azalma intervalları.

[1],səh. 242-245,248-249

11

28.04.16



Qabarıqlıq. Yuxarıya və aşağıya qabarıq funksiyalar. Funksiyaların əyilmə nöqtələri.

[1],səh.245-249

12

05.05.16




Lokal maksimum və minimum. Birinci və ikinci tərtib törəmə vasitəsilə onların tədqiqi. Kritik nöqtələr. Kritik nöqtələrin klassifikasiyası.

[1],səh. 250-255

13

12 .05.16




Polinominal və rasional funksiyaların qrafiki. Funksiyanın şaquli və üfüqi asimptotları.

[1],səh.256-264


14

19 .05.16




Mütləq ekstremum. Funksiyanın maksimum və minimum qiymətlərinin tapılması.Ekstremum qiymət haqqında teorem.

[1],səh.270-279

15

26.05.16




Maksimum və minimumun bəzi məsələlərə tətbiqi.

[1],səh. 280-288


16




Final imtahanı.



Bu tədris proqramı fənn haqqında tam məlumatı özündə əks etdirir və hər hansı dəyişiklik barədə öncədən xəbər veriləcək.
Yüklə 68,73 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin