Natural small vibrations of a flat viscoelastic spiral spring



Yüklə 291,53 Kb.
səhifə3/3
tarix13.12.2023
ölçüsü291,53 Kb.
#140050
1   2   3
en 1 КОЛЕБАНИЯ ПЛОСКОЙ СПИРАЛЬНОЙ ПРУЖИНЫ 2 3 ru en

3. Results and analysis
Based on the considered method for determining the frequencies of natural oscillations, an algorithm and a computer program were compiled [6], with the help of which calculations of the frequencies of natural oscillations were carried out. Based on the calculation results, graphs were constructed of the dependence of natural vibration frequencies on the geometric parameters of tubular springs (Fig. 1): bending radius of the tube ( ), tube wall thickness ( ), radius of the workpiece tube ( ), rotation angle ( ) and the ratio of the semi-axes of the elliptical tube-workpiece ( ).
Based on the results of calculations, graphs of the dependence of natural oscillation frequencies on the geometric parameters of tubular springs are constructed (Fig.1): the bending radius of the tube ( ), the wall thickness of the tube ( ), the radius of the tube-blank ( ), the angle of rotation ( ) and the ratio of the semi-axes of the elliptical tube-blank ( ).

4. Conclusions
Thus, a resolving system of differential equations (15) and the corresponding boundary conditions are obtained. Also, based on the methods of differential geometry, the main relationships are obtained. To solve (15), asymptotic or numerical methods can be used.
Literature

  1. Païdoussis MP: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics. J. Sound Vib. 310(3), 462-492 (2008)

  2. Safarov, I.,Teshaev, M.,Yarashev, J.A. Vibrations of multilayer composite viscoelastic curved pipe under internal pressure.IOP Conference Series: Materials Science and Engineering, 2021, 1030(1), 012073 DOI 10.1088/1757-899X/1030/1/012073

  3. Tang S., Sweetman B.: A geometrically-exact momentum-based nonlinear theory for pipes conveying fluid. J. Fluid Struct. 100, 103190 (2021)

  4. Wang Y., Wang L., Ni, Q., Yang M., Liu D., Qin, T.: Non-smooth dynamics of articulated pipe conveying fluid subject to a one-sided rigid stop. Appl. Math Model. 89, 802-818 (2021)

  5. Safarov, I.,Axmedov, S.,Rayimov, D.,Homidov, F. Manometric Tubular Springs Oscillatory Processes Modeling with Consideration of its Viscoelastic Properties

E3S Web of Conferences, 2021, 264, 01010 DOI 10.1051/e3sconf/202126401010

  1. Abdollahi R., Dehghani Firouz-abadi R., Rahmanian M.: On the stability of rotating pipes conveying fluid in annular liquid medium. J. Sound Vib. 494, 115891 (2021)

  2. Mirzaev, IM Interaction between the bit and the rock. Soviet Mining Science 11, 70–73 (1975).https://doi.org/10.1007/BF02501021.

  3. Yamashita K., Nishiyama N., Katsura K., Yabuno H.: Hopf-Hopf interactions in a spring supported pipe conveying fluid. Mech. Syst. Signal Pr. 152, 107390 (2021)

  4. Yan D., Guo S., Li Y., Song J., Li, M., Chen W.: Dynamic characteristics and responses of flow-conveying flexible pipe under consideration of axially-varying tension. Ocean Eng. 223 (2021)

  5. TeshаevM.Kh., Safarov II, BoltayevZI,SobirovaR.A. RuzievTRPropagation of Natural Waves in Extended Viscoelastic Plates of Variable Thickness.AIP Conference Proceedings,2647, 030002 (2022).https://doi.org/10.1063/5.0104170

  6. Lu ZQ, Zhang KK, Ding H., Chen LQ: Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dyn. 100(2), 1091-1104 (2020)

  7. Soares, R.M., Moreira, C.L.R. & Silva, F.M.A. Nonlinear Oscillations of a Transversally Excited Non-shallow Conoidal Shell via Finite Element Analysis. J. Vib. Eng. Technol. 10, 2073–2095 (2022).https://doi.org/10.1007/s42417-022-00448-5

  8. Safarov I.,Teshaev M.,Marasulov A.,Jurayev T.,Raxmonov B.Vibrations of Cylindrical Shell Structures Filled with Layered Viscoelastic Material/E3S Web of Conferences, 2021, 264, 01027DOI10.1051/e3sconf/202126401027

  9. Sherzod Khudainazarov, Tulkin Mavlanov, Feruza Umarova, and Talibjan Sabirjanov. The natural vibrations of shell structures taking into account dissipative properties and structural heterogeneity. E3S Web of Conferences 402, 07023 (2023) https://doi.org/10.1051/e3sconf/202340207023 Trans Siberia 2023

  10. Holmes P. Pipes supported at both ends cannot flutter. J. Appl. Mech. 45(3), 619-622 (1978)
  11. .Safarov, II,Teshaev, M.Kh.,Rahmonov, B.S.,Axmedov, M. Sh.,Rayimov, D.G. Seismic Vibrations of Spherical Bodies in a Viscoelastic Deformable Medium. Part 1.AIP Conference Proceedings, 2022, 2432, 030124


  12. Modarres-Sadeghi Y., Païdoussis MP Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends. J. Fluid Struct. 25(3), 535-543 (2009)

  13. Chen W., Hu Z., Dai H., Wang L. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity. Appl. Math. Mech-Engl. 41(9), 1381-1400 (2020).

  14. Semler, C., Li, G., Païdoussis, MP The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577-599 (1994)

  15. Stangl M., Gerstmayr J., Irschik H. A large deformation planar finite element for pipes conveying fluid based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(3), 031009 (2009)

  16. Chen W., Dai HL, Jia QQ, Wang L. Geometrically exact equation of motion for large amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dyn. 98(3), 2097-2114 (2019)

  17. Cai FC, Zang FG, Ye XH, Huang, Q. Analysis of nonlinear dynamic behavior of pipe conveying fluid based on absolute nodal coordinate formulation. J. Vib. Shock. 30(6), 143-146 (2011)

  18. Karimov, K.,Khudjaev, M.,Akhmedov, A. Modeling fluid outflow from a channel consisting of three different segments. E3S Web of Conferences, 258, 08021 (2021) DOI 10.1051/e3sconf/202125808021

  19. Karimov, K.,Akhmedov, A.,Adilova, S. Theoretical and Engineering Solutions of the Controlled Vibration Mechanisms for Precision Engineering.AIP Conference Proceedings, 2637, 060001DOI 10.1063/5.0118863 (2022)

  20. Tеshаеv M.Kh.,  Sаfаrоv I.I., Bоltаyеv Z.I., Sobirova R.A., Ruziev T.R. Propagation of Natural Waves in Extended Viscoelastic Plates of Variable Thickness. AIP Conference Proceedings, 2647, 030002 (2022). https://doi.org/10.1063/5.0104170

Yüklə 291,53 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin