Natural son va nol tushunchasining vujudga kelishi haqida qisqacha tarixiy ma'lumot



Yüklə 11,4 Kb.
səhifə4/5
tarix24.10.2023
ölçüsü11,4 Kb.
#130861
1   2   3   4   5
Natural son va nol tushunchasining vujudga kelishi haqida qisqac-fayllar.org

Nomanfiy butun sonlar to'plamini to'plamlar nazariyasi asosida qurish XIX asrda G. Kantor tomonidan to'plamlar nazariyasi yaratilgandan so'ng mumkin bo'ldi. Bu nazariya asosida chekli to'plam va o'zaro bir qiymatli moslik tushunchalari yotadi. I-t a' r if. Agar A va B to 'plamlar orasida a 'zaro bir qiymatli moslik o'rnatish mumkin bo '[sa, bu to 'plamlar teng quvvatli deyifadi. A - B ko'rinishda yoziladi. «Teng quvvatlilik» munosabati refleksiv va tranzitiv bo'lgani uchun u ekvivalentlik munosabati bo'ladi va barcha chekli to'plamlarni ekvivalentlik sinflariga ajratadi. Har bir sinfda turli elementli to'plamlar yig'ilgan bo'lib, ularning umumiy xossasi teng quvvatli ekanligidir.


  • Nomanfiy butun sonlar to'plamini to'plamlar nazariyasi asosida qurish XIX asrda G. Kantor tomonidan to'plamlar nazariyasi yaratilgandan so'ng mumkin bo'ldi. Bu nazariya asosida chekli to'plam va o'zaro bir qiymatli moslik tushunchalari yotadi. I-t a' r if. Agar A va B to 'plamlar orasida a 'zaro bir qiymatli moslik o'rnatish mumkin bo '[sa, bu to 'plamlar teng quvvatli deyifadi. A - B ko'rinishda yoziladi. «Teng quvvatlilik» munosabati refleksiv va tranzitiv bo'lgani uchun u ekvivalentlik munosabati bo'ladi va barcha chekli to'plamlarni ekvivalentlik sinflariga ajratadi. Har bir sinfda turli elementli to'plamlar yig'ilgan bo'lib, ularning umumiy xossasi teng quvvatli ekanligidir.

  • t a' r if. Natural son deb, bo'sh bo'lmagan chekli teng quvvatli to 'plamlar sinfining umumiy xossasiga aytiladi.

t a ' r i f. Bo'sh to 'plamlar sinfining umumiy xossasiga esa son o soni deyiladi, 0 = n(0). o soni va barcha natural sonlar birgalikda nomanfiy butun sonlar to'plamini tashkil qiladi.


  • t a ' r i f. Bo'sh to 'plamlar sinfining umumiy xossasiga esa son o soni deyiladi, 0 = n(0). o soni va barcha natural sonlar birgalikda nomanfiy butun sonlar to'plamini tashkil qiladi.

  • Nomanfiy butun sonlar yig'indisi, uning mavjudligi va yagonaligi. To'plamlar ustida bajariladigan har bir amalga shu 60 to'plamlar bilan aniqlanadigan sonlar ustidagi amallar mos keladi. Masalan, o'zaro kesishmaydigan A va B to'plamlar birlashmasidan iborat C to'plam A va B to'plamlar bilan aniqlanadigan a va b nomanfiy butun sonlarning yig'indisi deb ataluvchi c sonni aniqlaydi. t a' r i f. Butun nomanfiy a va b sonlarning yig'indisi deb n(A) = a; n(B) = b bo'lib, kesishmaydigan A va B to 'plamlar birlashmasidagi elementlar soniga aytiladi. a + b = n(Av B), bu yerda n(A) = a; n(B) = b va AI\B = 0. Berilgan ta'rifdan foydalanib, 5 + 2 = 7 bo'lishini tushuntiramiz. 5 - bu biror A to'plamning elementlari soni, 2 - biror B to'plamning elementlari soni, bunda ularning kesishmasi bo'sh to'plam bo'lishi kerak. Masalan, A = {x; y; z; t; p}, B = {a; b} to'plamlarni olamiz. Ularni birlashtiramiz: Av B = {x; y; z; t; p; a; b}. Sanash yo'li bilan n(Av B) = 7 ekanligini aniqlaymiz. Demak, 5 + 2 = 7.

Yüklə 11,4 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin