O liy o'q u V yurtlarining arxitektura V a qurilish ta ’lim y o ‘n alish I talabalari uchun darslik


E gilgan o ‘qning d ifferen sial tenglam asin i in tegrallash



Yüklə 37,71 Kb.
Pdf görüntüsü
səhifə175/301
tarix10.12.2023
ölçüsü37,71 Kb.
#139076
1   ...   171   172   173   174   175   176   177   178   ...   301
Materiallar qarshiligi (2) (2)

8.3. E gilgan o ‘qning d ifferen sial tenglam asin i in tegrallash
Solqilik va burilish burchaklarini ko‘pincha shartli ravishda balkaning 
deformatsiyasi deb atashadi, aslida esa, mohiyatan, ular deformatsiya emas
- ko'chishlardir.
8.1-misol. 
Tekis yoyiq kuch bilan yuklangan ikki tayanchli balkaning solqi-
ligi va burilish burchagini aniqlash talab etiladi. Koordinata boshini chap tayanch
shamirida deb olamiz va, x o'qini o'ng tomonga yo'naltiramiz (8.3-rasm).
У
Й 
x
I - - Л 
h
*■
И
8 .3-rasm .
q i
Tayanch reaksiyalari 
R„

R b ~
, Ha = 0.
Koordinata boshidan 
x
m asofada yotgan kesim uchun momentlar teng­
lamasini yozamiz va uni (8.6) formulaga qo ‘yib, ketm a - ket integrallaymiz:
q x ( £ - x )
У =
У =
q

E J
r Ix -
л-п

E J \
+ C ,
y =
' i x 3

E J
12
+
a. x
+c.
2 .
Ixtiyoriy o ‘zgarmas sonlar (integrallash doimiylari) balka uchlarining 
biriktirilish shartlariga (tayanch xillariga) qarab aniqlanadi. Biz yechayot- 
gan balka uchun chegaraviy shartlar quyidagicha:
Chap tayanchda, x = 0, у = 0, 
o ‘ng tayanchda, x = 
I
, у = 0.


Bu shartlardan foydalanib, quyidagilarga ega boMamiz C2 = 0, C, = - - 
bunga k o ‘ra,
У =
-
 
Я
2 E J
У
2 E J
i x

X'

12
i x 2
+
q V x
24 E J
24 ‘
Balka to ‘rtinchi tartibli parabola bo‘yicha egiladi. Eng katta solqilik f, 
balkaning 
y ’
= 0 shartidan aniqlanadigan kesimida vujudga keladi. Bizning 
holda bu kesim x = 0,5 
I
dir. Shunday qilib,
f = y ™ =

q i 4
384 
E J
8.2-m isol. Bu holda balkani ikkita uchastkaga boMinadi, chunki har bir 
uchastkaning mom entlar tenglamasi turlicha ifodalanadi (8.4-rasm).

Yüklə 37,71 Kb.

Dostları ilə paylaş:
1   ...   171   172   173   174   175   176   177   178   ...   301




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin