Reja algebraik va transcendent tenglamalar haqida tushuncha
Vatarlar usuli
Vatarlar usuli [a, b] kesmaga to’g’ri keluvchi f(x) egri chiziq yoyini tutashtiruvchi vatar OX o’qini shu kesma ichida kesib o’tishiga asoslangan.
Vatarning OX o’qi bilan kesishgan nuqtasi ildizga yaqinroq (1-rasmda x1 va ga mos nuqtalar). Agar ildiz yotgan kesma sifatida [a, x1] yoki [x1, b] olinsa, avvalgi [a, b] kesmaga nisbatan kichikroq kesma hosil bo’ladi. Yangi kesmada mos f(x) yoyiga yana vatar o’tkazib, ilgarigidan ko’ra torroq oraliqni aniqlash mumkin va hokazo. Bu jarayonni davom ettirib, ildiz yotgan oraliqni istalgancha kichraytirish mumkin bo’ladi.
T englamaning [a, b] ajratilgan ildizini aniqlikda hisoblash uchun x0 boshlang’ich yaqinlashish tanlab olinadi. Bu 1-rasmda ko’rsatilgandek f(x) funksiyaning birinchi va ikkinchi tartibli hosilalarning ishoralariga bog’liq. Agar y'<0 ba y''<0 (1 a-rasm) yoki y'>0 va y''<0 (1 d-rasm) bo’lsa x0=b, qolgan hollarda x0=a qilib olish kerak (1-b va 1-c rasmlar).