Sequential drug decision problems in long-term medical conditions: a case Study of Primary Hypertension Eunju Kim ba, ma, msc



Yüklə 10,52 Mb.
səhifə38/116
tarix04.01.2022
ölçüsü10,52 Mb.
#58520
1   ...   34   35   36   37   38   39   40   41   ...   116

3.6.2Enumeration


The algorithm was repeated to examine the six policies included in the search space SS (see Figure ‎3.). The total net benefit TotalReward was calculated through the successive decision-tree model function_SemiMarkov. The variations of each sequential treatment policy πx were applied depending on the subsequent health states. Taking an example of π1=(drug1,drug2,drug3), the variations are:

πx={ (drug1,drug1,drug1),(drug1,drug1,drug2),(drug1,drug2,drug2),(drug1,drug2,drug3) }

The optimal solution OptSol was determined by directly comparing the total net benefits of six sequential treatment policies.




T = 3; % The number of time periods.

A = 6; % The number of possible treatment sequences.

S = 27; % The number of possible disease pathways.
% Possible treatment pathways where 1=drug1, 2=drug2 and 3=drug3.

SS = [1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1];


% Estimate the total net benefit of each sequential treatment policy using ‘function_SemiMarkov’.


Yüklə 10,52 Mb.

Dostları ilə paylaş:
1   ...   34   35   36   37   38   39   40   41   ...   116




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin