Sources page biographical material



Yüklə 2,59 Mb.
səhifə68/248
tarix03.01.2022
ölçüsü2,59 Mb.
#34169
1   ...   64   65   66   67   68   69   70   71   ...   248
5.J.1. MRS PERKINS'S QUILT
This is the problem of cutting a square into smaller squares.
Loyd. Cyclopedia, 1914, pp. 248 & 372, 307 & 380. Cut 3 x 3 into 6 squares: 2 x 2 and 5  1 x 1.

Dudeney. AM. 1917. Prob. 173: Mrs Perkins's quilt, pp. 47 & 180. Same as Loyd's "Patch quilt puzzle" in 5.J.

Dudeney. PCP. 1932. Prob. 117: Square of Squares, pp. 53 & 148 149. = 536, prob. 343, pp. 120 & 324 325. c= "Mrs Perkins's quilt".

N. J. Fine & I. Niven, proposers; F. Herzog, solver. Problem E724 -- Admissible Numbers. AMM 53 (1946) 271 & 54 (1947) 41 42. Cubical version.

J. H. Conway. Mrs Perkins's quilt. Proc. Camb. Phil. Soc. 60 (1964) 363 368.

G. B. Trustrum. Mrs Perkins's quilt. Ibid. 61 (1965) 7 11.

Ripley's Puzzles and Games. 1966. Pp. 16-17, item 7. "Can you divide a square into 6 perfect squares?" Answer as in Loyd.

Nick Lord. Note 72.11: Subdividing hypercubes. MG 72 (No. 459) (Mar 1988) 47 48. Gives an upper bound for impossible numbers in d dimensions.



David Tall. To prove or not to prove. Mathematics Review 1:3 (Jan 1991) 29-32. Tall regularly uses the question as an exercise in problem solving. About ten years earlier, a 14 year old girl pointed out that the problem doesn't clearly rule out rejoining pieces. E.g. by cutting along the diagonals and rejoining, one can make two squares.

Yüklə 2,59 Mb.

Dostları ilə paylaş:
1   ...   64   65   66   67   68   69   70   71   ...   248




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin