Transforming and leveraging olap queries Patrick Marcel



Yüklə 445 b.
tarix27.01.2018
ölçüsü445 b.
#41019


Transforming and leveraging OLAP queries

  • Patrick Marcel

  • Université François Rabelais Tours

  • Laboratoire d'Informatique

  • SAP-BO, 06.22.2010


Outline

  • Short CV

  • Personnalizing OLAP queries

  • Recommending OLAP queries

  • Summarizing OLAP queries

  • Perspectives



About me

  • PhD « multidimensional data(base) manipulations and rule based languages »,

    • defended 1998, LISI (now LIRIS) INSA Lyon
    • Sup. J. Kouloumdjian and MS Hacid
  • Maître de Conférences, UFRT, Dépt. Informatique

    • Head of the Masters program in Information systems and decision making
  • Semester off (September 2010 – January 2011)



About me (cont'd)

  • Member of DB & NLP team (4 PR, 8 MCF)

    • NLP
    • XML and web technology
    • Data mining and OLAP
    • Recent activities
      • Pattern based global models (PhD Eynollah Khanjari 2009)
      • Summarizing and visualizing large sets of association rules (PhD Marie Ndiaye 2010)
      • Collaborative exploration of datawarehouses (PhD Elsa Negre 2009)


Personnalizing OLAP queries

  • PhD Hassina Mouloudi (2007)

  • Main pulications

    • ACM DOLAP 2005
    • BDA 2006
    • Hassina's dissertation (in French)
  • Prototype



Motivation

  • SELECT CROSSJOIN({City.Tours, City.Orleans},

  • {Category.Members}) ON ROWS

  • {2003, 2004, 2005, 2006} ON COLUMNS

  • FROM SalesCube

  • WHERE (Measures.quantity)

  • Visualization depends on the user's profile



The problem

  • Given

    • An MDX query q
    • User preferences P
    • A Visualization constraint v
  • Find a preferred query q'

    • Included in q
    • Nearest to q satisfying v
    • The most interesting w.r.t P


Example of preferred query



Personnalizing



Personnalizing OLAP queries

  • Context

    • Dimension tables in main memory
    • No acces to the fact table
  • Principle

    • Compute sets of positions in the resulting crosstab
    • Compute the structures of the crosstabs


Example of personnalization (1)



Example of personnalization (2)



Example of personnalization (3)



Example of personnalization (4)



Example of personnalization (5)



Prototype



Speedup



Recommending OLAP queries

  • PhD Elsa Negre (2009)

  • Main publications

    • ACM DOLAP 2008
    • DaWak 2009
    • ACM DOLAP 2009
    • Int. Journal of DW and mining
  • Prototype

    • Various methods for OLAP query recommendation
      • Mondrian, MySql


Context and principle



Distances

  • Between positions in the cube

    • Hamming
    • Based on shortest path
  • Between queries

    • Based on differences in dimension
    • Hausdorff
  • Between sessions

    • Based on the subsequence
    • Edit distance


Experiments

  • Cube

    • Foodmart (Mondrian sample cube)
  • Session generator

    • Max 100 cells per MDX query
    • 25-50 sessions
    • 20-50 queries/session
    • Log of 150-25000 queries
    • 1-20 queries/current session


Efficiency

  • Shortest path

  • Hausdorff distance

  • Edit distance



Effectiveness

  • 10 fold cross validation

  • For the current sessions

    • Remove the last query
    • check how often this last query is recommended


Effectiveness



Query recommandation for discovery driven analysis?



Processing the log



Processing the log



Processing the log



Processing the log



Processing the log



Processing the log



Recommending



Recommending



Recommending



Recommending



Recommending



Prototype

  • Java, mondrian OLAP engine & Sarawagi's icube

  • Preliminary tests show that

    • for small size log (few hundreds of queries)
    • Recommendation time does not exceeds 50 ms


Conclusion: so far...



Summarizing OLAP queries

  • Master's thesis Julien Aligon (in progress)

  • Problem: viewpoints on former sessions?

  • Experiments on healthcare data

  • Related publication

    • EDA 2007, 2010


Perspectives

  • Project STIC-AmSud PQUERY: preference models for personnalized queries

  • Forthcomming work with M. Golfarelli (U. Bologna)

    • Preference mining to dynamically add preferences to an MDX query
  • Contributions to a collaborative query management system for OLAP



Yüklə 445 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin