Under the supervision of Christian Pérez insa de Rennes



Yüklə 445 b.
tarix03.11.2017
ölçüsü445 b.
#29837


Generic Support of Composition Operators in Software Component Models, Application to Scientific Computing

  • Under the supervision of Christian Pérez

  • INSA de Rennes

  • INRIA Team-Projects PARIS(IRISA) / GRAAL(LIP)


Context: Scientific Applications

  • Complex applications

    • Coupling of independent codes
      • Developed by distinct teams
    • Long life-cycle
      • longer than hardware
  • Computational intensive (HPC), => requires complex hardware

    • Supercomputers
    • Computing clusters
    • Computing grids
    • Clouds


Context: Parallel/Distributed Computing Paradigms

  • Shared memory

    • Implementations
      • OS (node level)
      • kDDM (cluster level)
      • Juxmem (grid level)


Context: Parallel/Distributed Computing Paradigms

  • Shared memory

    • Implementations
      • OS (node level)
      • kDDM (cluster level)
      • Juxmem (grid level)
  • Message passing

    • Implementations
      • MPI
      • PVM
      • Charm++
    • Variations
      • Collective operations
        • Barrier
        • Broadcast
        • Scatter


Context: Parallel/Distributed Computing Paradigms

  • Shared memory

    • Implementations
      • OS (node level)
      • kDDM (cluster level)
      • Juxmem (grid level)
  • Message passing

    • Implementations
      • MPI
      • PVM
      • Charm++
    • Variations
      • Collective operations


Context: Parallel/Distributed Computing Paradigms

  • Shared memory

    • Implementations
      • OS (node level)
      • kDDM (cluster level)
      • Juxmem (grid level)
  • Message passing

    • Implementations
      • MPI
      • PVM
      • Charm++
    • Variations
      • Collective operations


Context: Composition-Based Programming

  • Components

    • Black boxes
    • Interactions through well defined interaction points
  • Application

    • Component instance assembly
    • High level view of architecture
  • Implementation

    • Primitive: C++, Fortran, Java
    • Composite (Assembly)
  • Dimension

    • Spatial (classical models)
      • CCA, CCM, Fractal, SCA
    • Temporal (workflow/dataflow)
      • Kepler, Triana


Context: Composition-Based Programming

  • Algorithmic skeletons

    • Predefined set of composition patterns
      • Farm (master/worker)
      • Pipeline
      • Map
      • Reduce
    • Focus: decoupling
      • User: application related concerns (what)
      • Skeleton developer: hardware related concerns (how)
    • Implementations


Context: Components for Parallel Computing

  • Parallel/distributed programming paradigms

    • Hidden architecture
    • Reuse complex
    • Hardware resource abstraction
    • Efficiency on various hardware


Context: Components for Parallel Computing

  • Memory sharing between components

    • CCA & CCM Extensions
  • Parallel components

    • CCA, SCIRun2, GridCCM
  • Collective communications

    • CCM Extension
  • Parallel method calls

    • SCIRun2, GridCCM
  • Master / worker support

    • CCA & CCM Extensions
  • Some algorithmic skeletons in assemblies

    • STKM


Context: Existing Models Limitations

  • Limited set of features in each model

    • => Combination in a single model
  • Unlimited set of features (including application specific)

    • => Extensibility of composition patterns


Context: Problematic

  • Goals for an extensible component model

    • User code reuse
    • Reusable composition patterns
    • Reusable inter-component interactions
    • Efficiency on various hardware


Outline

  • Context of the Study

  • Software Skeletons as Generic Composites

  • HLCM: a Model Extensible with Composition Patterns

  • HLCM in Practice

  • Conclusion



Software Skeletons with Components: Motivating Example

  • Goal

    • Generating pictures of the Mandelbrot set
  • Embarrassingly parallel problem

    • C = (x,y)
    • Z0 = 0, Zn+1 = Zn² + C
      • Bounded → black
      • Unbounded → blue
  • Hardware

    • Quad-core processor
  • Task farm

    • 4 workers
    • Input: coordinate
    • Output: pixel color


Software Skeletons with Components: A Component Based Farm



Software Skeletons with Components: Limitations of Component Based Farm

  • Hard Coded in the composite

    • Type of the worker
    • Type of the interfaces
    • Number of workers
  • Limited reuse

    • For a distinct calculation
    • For distinct hardware


Software Skeletons with Components: A Component Based Farm



Software Skeletons with Components: Introducing Parameters



Software Skeletons with Components: Introducing Parameters



Software Skeletons with Components: Introducing Parameters



Software Skeletons with Components: Concepts for Genericity



Software Skeletons with Components: Concepts for Genericity

  • Specializations

    • Use of generic artifacts
    • Arguments bind parameters to actual values


Software Skeletons with Components: Metamodel-based Transformation



Software Skeletons with Components: Deriving a Metamodel with Genericity

  • Example

    • Generic artifact
      • ComponentType
    • Artifact usable as parameter
      • PortType
  • Additional modifications

    • Default values for parameters
    • Constraints on parameter values
    • Explicit specializations
    • Meta-programming


Software Skeletons with Components: Transformation

  • Specialized compilation

    • C++ approach
    • Makes template meta-programming possible
  • Algorithm

    • Copy non generic elements
    • For each generic reference
      • Create a context (parameter  value)
      • Copy the generic element in that context


Software Skeletons with Components: Summary

  • Defined genericity for component models

    • Straight-forward meta-model extension
    • Independent of the component model
      • SCA (100 class)  GenericSCA (+20 class)
      • ULCM (71 class)  GULCM (+24 class)
  • Proposed an approach for genericity execution support

    • Transformation
      • generic model  non-generic, executable equivalent
    • Relies on model-driven engineering approach
      • Implemented using Eclipse Modeling Framework (EMF)
  • Make skeleton implementation possible

    • Implemented skeletons: task farm (pixel, tile), …
      • Computed pictures of the Mandelbrot set


Outline

  • Context of the Study

  • Software Skeletons as Generic Composites

  • HLCM: a Model Extensible with Composition Patterns

  • HLCM in Practice

  • Conclusion



Combining All Concepts in HLCM: Aims & Approach

  • Aims

    • Support user-defined extensions
      • Hierarchy
      • Genericity
      • Interactions: connectors
      • Adaptation to hardware: implementation choice
    • Maximize reuse
      • Existing user code => component models
  • Approach

    • Abstract model: primitive concepts taken from backend model
      • HLCM Specializations (HLCM + CCM => HLCM/CCM)
    • Deployment time transformation
      • Hardware resources taken into account
      • Fall back to backend


Combining All Concepts in HLCM: Component Implementation Choice

  • Distinguish component type & component implementation

    • Component type
      • Generic
      • List of ports
    • Component implementation
      • Generic
      • Implemented component type specialization
      • Content description
        • Primitive
        • Composite
  • Choice at deployment time

    • Match used specialization & implemented specialization
    • Choose amongst possible


Combining All Concepts in HLCM: Introducing Connectors from ADLs

  • Without connectors

  • Connectors

    • A concept from ADLs
    • Connectors reify interaction types
      • A Name
      • Set of named roles
    • Instance are called connections
      • Each role fulfilled by a set of ports
    • Fisrt class entity


Combining All Concepts in HLCM: Generators

  • Generator = connector implementation

  • 1 connector  multiple generators

    • Distinct constraints
      • Port types
      • Component placement
  • Two kinds of generators

    • Primitive
    • User-defined
      • Composite
  • Intrinsically generic

    • Type of ports fulfilling roles  generic parameters


Combining All Concepts in HLCM: Concepts Interactions



Combining All Concepts in HLCM: Concepts Interactions



Combining All Concepts in HLCM: Concepts Interactions



Combining All Concepts in HLCM: Introducing Open Connections



Combining All Concepts in HLCM: Introducing Open Connections

  • Connection:

    • Connector
    • Mapping: role -> set(ports)
  • Merge({ ConnA, ConnB })

    • Pre: ConnectorA == ConnectorB
    • Each ( role r )
      • Mapping: r -> set(Port)A union set(Port)B
  • Component

    • Expose named connection
      • Open connection
    • Composite
      • Expose internal connection
    • Primitive
      • Fill exposed connections roles


Combining All Concepts in HLCM: Introducing Open Connections



Combining All Concepts in HLCM: Connection Adaptors & Bundles

  • Bundle

  • Connection adaptor

    • Supports open connection polymorphism
      • Supported connection
      • Behavior definition
    • Two views
      • A connection implementation
      • An open-connection exposer
    • Implemented by an assembly
    • Used only if necessary


Combining All Concepts in HLCM: Summary

  • Approach

    • Abstract model: primitive elements from backend
      • E.g. HLCM + CCM  HLCM/CCM
    • Transformation: HLCM specialization  backend
      • E.g. HLCM/CCM  pure CCM
  • Source model (PIM)

    • Four main concepts
      • Hierarchy, genericity, implementation choice, connectors
    • Additional concepts
      • Open connections, merge, connection adaptors, bundles
  • Transformation

    • Merge connections (use adaptors if required)
    • Choose implementation
    • Expose composite content
  • Destination model (PSM)

    • Direct map to backend


Outline

  • Context of the Study

  • Software Skeletons as Generic Composites

  • HLCM: a Model Extensible with Composition Patterns

  • HLCM in Practice

  • Conclusion



Experimental Validation: A Framework for HLCM Implementation

  • Model-transformation based

    • Eclipse Modeling Tools
  • HLCM/CCM source model (PIM)

  • HLCM destination model (PSM)

    • 160 Emfatic lines (41 Ecore classes)  1500 generated Java lines
    • 800 utility Java lines
  • Transformation engine

    • 4000 Java lines
  • Already implemented connectors (HLCM/CCM)

    • Shared Data
    • Collective Communications
    • Parallel method calls


Experimental Validation: Implementing shared memory



Experimental Validation: Implementing shared memory



Experimental Validation: Implementing shared memory



Experimental Validation: Parallel Method Calls Server

  • component ServiceProvider exposes

  • {

  • UseProvide
    }> s;

  • }

  • bundletype ParallelFacetinterface I>

  • {

  • each(i:[1..N])

  • {

  • UseProvide
    }>

  • part[i];

  • }

  • }

  • composite ParallelServiceProvider

  • implements ServiceProvider

  • {

  • each(i:[1..N])

  • {

  • PartialServiceProvider p[i];

  • }

  • this.s.provider += ParallelServiceFacet

  • {

  • each(i:[1..N])

  • {

  • part[i] = providerPart[i].s;

  • }

  • }

  • }



Experimental Validation: Parallel Method Calls Result



Experimental Validation: Parallel Method Calls Performance

  • Comparison

    • HLCM/CCM
    • Paco++
  • Single cluster

    • 1Gb Ethernet
  • Parallelism

    • 3 clients
    • 4 servers


Experimental Validation: Conclusion

  • HLCM Implementation Developed

    • HLCMi: a framework for HLCM specializations implementations
    • HLCM/CCM: a CCM based specialization
    • Other specializations
      • Plain Java
      • CCM + plain C++
      • Charm++
  • Validated



Outline

  • Context of the Study

  • Software Skeletons as Generic Composites

  • HLCM: a Model Extensible with Composition Patterns

  • HLCM in Practice

  • Conclusion



Conclusion

  • Identified need for an extensible component model

    • User-defined inter-component interactions (composite generators)
    • User-defined parameterized component implementations (skeletons)
  • Introduced genericity in component models

    • Supports user-defined skeleton implementation
    • Applicable to existing component models
    • Model transformation approach
  • Described an extensible component model: HLCM

    • Abstract model that relies on a backend for primitive concepts
    • Concepts combined in HLCM
      • Hierarchy
      • Genericity
      • Implementation choice
      • Connectors with open connections & connection adaptors
  • Implemented & used

    • A model-based implementation framework using EMF: HLCMi
    • Used for synthetic example implementations
      • memory sharing
      • parallel method calls


Perspectives

  • More validation

    • MapReduce ANR project (2010 - 2013)
    • Domain decomposition, Adaptative Mesh Refinement
      • Salome (EDF, CEA) (w. Vincent Pichon)
    • OpenAtom (Molecular Dynamic)
      • Pr Kale @ UIUC (Charm++)
      • Complex application, 4D/2D interaction
  • Introduce the time dimension

    • Usage
      • Change of implementation choices during execution (QoS, Data, …)
      • Time related applications description (dataflow, workflow)
    • Problem
      • Keep logical & primitive model in sync
  • Study choice algorithms

    • Choice criteria attached to model elements (w. scheduling community)
    • Interactions with resource management systems (w. Cristian Klein)




Experimental Validation: A Framework for HLCM Implementation



Software Skeletons with Components: Transformation Algorithm

  • Transform( e:ModelElement, c:Context)

    • If e is not related to genericity
      • Recursively apply the algorithm to the content of e


Software Skeletons with Components: Transformation Algorithm

  • Transform( e:ModelElement, c:Context)

    • If e is a reference to a generic concept
      • Create a new context with the arguments in e
      • Transform the generic concept in this context


Software Skeletons with Components: Transformation Algorithm

  • Transform( e:ModelElement, c:Context)

    • If e is a generic concept
      • Choose the right explicit specialization or the default one
      • Recursively apply the algorithm to its content


Software Skeletons with Components: Transformation Algorithm

  • Transform( e:ModelElement, c:Context)

    • If e is a reference to a parameter
      • Replace it by the value of the parameter in c


Software Skeletons with Components: Concepts for Genericity (3/3)

  • Explicit specializations

    • Distinct implementation for a range of specializations
    • When some constraints are fulfilled
    • Makes template meta-programming possible


Yüklə 445 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin