Qoy funksiyalar f(x) Və g(x), törəmələri bizə məlum olan. Məsələn, yuxarıda müzakirə olunan elementar funksiyaları götürə bilərsiniz. Onda bu funksiyaların cəmi və fərqinin törəməsini tapa bilərsiniz:
(f + g)’ = f ’ + g ’
(f − g)’ = f ’ − g ’
Deməli, iki funksiyanın cəminin (fərqinin) törəməsi törəmələrin cəminə (fərqinə) bərabərdir. Daha çox şərtlər ola bilər. Misal üçün, ( f + g + h)’ = f ’ + g ’ + h ’.
Düzünü desək, cəbrdə “çıxma” anlayışı yoxdur. “Mənfi element” anlayışı var. Buna görə də fərq f − g cəmi kimi yenidən yazıla bilər f+ (−1) g, və sonra yalnız bir düstur qalır - cəminin törəməsi.