Executive Summary



Yüklə 2,18 Mb.
səhifə2/25
tarix03.01.2022
ölçüsü2,18 Mb.
#34224
1   2   3   4   5   6   7   8   9   ...   25
2. Dissemination and use 8
References 9

Annex 1 - Survey of expertise and infrastructure within the Lipidomics field
Annex 2 - Plan for Using and Disseminating Knowledge

(extended version)

Annex 3 - Plan for Using and Disseminating Knowledge

(publishable version)
Annex 4 - Final management report (pending)
Annex 5 - Final report on the distribution of the Community's contribution (pending)
Annex 6 - Questionnaires

TOWARDS A EUROPEAN LIPIDOMICS PROGRAM
1. Project execution
The research areas that deal with the major chemical constituents that build up the cells in our body are referred to as genomics for genes and nucleic acids, proteomics for proteins and glycomics for carbohydrates. What has been missing in the “OMICS” realm is lipidOMICS. Since both carbohydrates and lipids are cellular metabolites, glycomics and lipidomics are subdivisions of metabolomics.
The time has come for generating broad insights into the role of lipids in physiology and pathology. Given that thousands of different lipids are present within a single cell and that many of these lipids are involved in modulating the processes of life in an area that is upcoming, lipidomics describes and quantitatively analyses the full complement of lipids, in for example body fluids, cells and tissues. Lipidomics integrates these data with knowledge of their protein targets, i.e. the metabolic enzymes and transporters, and of the relevant genes and the regulatory aspects of these physiological systems. Above all, an understanding of cell membranes will not be possible without understanding their lipid constituents.
Most important is the fact that many of the widespread diseases that plague humankind involve lipids. Prime examples are cardiovascular disease, obesity-related type-2 diabetes, and stroke. Other major diseases such as cancer and Alzheimer's disease also have a lipid involvement. In addition to these disorders of epidemic proportions, there are many other diseases that are directly caused by inherited defects in lipid metabolic enzymes and transporters, such as defects in cholesterol synthesis and lipid storage diseases. Lipids also play major roles in autoimmune diseases and act as (co-)receptors for bacteria, viruses and toxins. An increase in our knowledge of disease-related changes in lipid patterns and its integration into proteomic and genomic data will provide new basic biomedical insights; thus, far-reaching possibilities for diagnostic application (prognostic assessment, diagnosis and monitoring) as well as for the development of prevention and new therapeutic approaches can be expected.
Although lipid research was well developed in the initial era of biochemistry in the 1960s and 70s, it lagged behind the more recent developments of genomics and proteomics. One major problem has been the lack of technology to analyze the thousands of different lipids in body fluids and cellular systems. However, this problem is now quickly being overcome by exquisitely sensitive high-throughput mass spectrometric methods that are revolutionizing the field. Still, the application of such techniques to solving basic biomedical problems has remained rare and the clinical use of the potential of lipidomics is sparse. Finally, at the start of the present initiative there were no fora where basic biomedical scientists and clinicians would meet the technology developers, bioinformaticians and industrial stakeholders who can provide the infrastructure and the standardized kits needed for clinical testing.



Yüklə 2,18 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   25




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin