Measurement of coseismic deformation by satellite geodesy



Yüklə 379,02 Kb.
səhifə7/11
tarix27.10.2017
ölçüsü379,02 Kb.
#16359
1   2   3   4   5   6   7   8   9   10   11

Glossary


2-pass differential interferometry. Approach to calculating interferograms which uses two radar images and a digital elevation model. Also called DEM-elimination.

3-pass interferometry. Approach to calculating interferograms which uses three radar images but no elevation model. Also called double differencing.

altitude of ambiguity. The topographic relief (or error) required to create one fringe in an interferogram. Noted ha and expressed in units of meters. Also called “ambiguity height”. Defined and sketched in Massonnet and Rabaute [1993] and Massonnet and Feigl [1998].

azimuth. In radar terminology, the along-track component of the vector between the ground and the satellite. The azimuth direction is parallel to the trajectory of the satellite.

baseline. In triangulation networks, the scalar distance between two bench marks which determines the scale of the network. In GPS, the same term has come to mean the vector difference in position between two bench marks. In INSAR, jargon for the (vector ) separation or (scalar) distance between two orbital trajectories.

C-band. Radar frequency around 5 GHz with wavelength around 6 cm.

CDP. Crustal Dynamics Project, a NASA research program in the 1980s.

CGPS. Continuously operating GPS receivers and networks.

CNES. Centre National d’Etudes Spatiales. French space agency.

cross-track. Component of motion perpendicular to the trajectory of the satellite.

DEM. Digital Elevation Model. An array of topographic values.

displacement vector. Movement of a point on the Earth’s surface. Usually defined in a local (east, north, up) coordinate system.

DORIS. Détermination d’Orbite et Radiopositionnement Intégré par Satellite. Doppler satellite navigation system developed by the French Space Agency.

double-difference. In INSAR, this term denotes the difference of two interferograms, each of which is the difference of two radar images. In GPS, this term describes a linear combination of four signals involving two satellites and two receivers.

DTED. Digital Terrain Elevation Data.

EDM. Electronic Distance Measurement. The technique and instrument usually used for trilateration [Bomford, 1980].

ERS-1. European Remote Sensing satellite 1. Carries a C-band SAR. Launched in 1991.

ERS-2. Twin of ERS-1, launched in 1995.

ESA. European Space Agency.

GPS. Global Positioning System. Dual-frequency L-band satellite navigation system.

IGS. International GPS Service. An organization responsible for worldwide coordination of continuous GPS measurements [Zumberge et al., 1996].

INSAR. INterferometric (analysis of) Synthetic Aperture Radar (images). Recent reviews [Bamler and Hartl, 1998; Madsen and Zebker, 1998; Massonnet and Feigl, 1998].

ITRF. International Terrestrial Reference Frame. The geodetic reference frame defined by a combination of VL BI, SLR, DORIS and GPS currently used to represent absolute coordinates for sub-centimeter geodetic measurements[Boucher et al., 1992].

JERS-1. Japanese Earth Resource Satellite 1.

JPL. Jet Propulsion Laboratory, Pasadena, California.

Landsat. Series of optical imaging satellites.

L-band. Radar frequency around 1.2 GHz with wavelength around 25 cm.

radar. RAdio Detection And Ranging

RADARSAT. Multi-mode, C-band radar satellite launched by Canada in 1995.

range. Distance along the line of sight between the satellite and the ground.

SAR. Synthetic Aperture Radar.

SEASAT. L-band radar satellite with altimeter which flew only for several months in 1978.

SIR-C. Shuttle Imaging Radar C.

SLC. Single Look Complex. Radar image including both phase and amplitude information, after processing by the synthetic aperture resolution reconstruction process.

SLR. Satellite Laser Ranging

SPOT. Satellite Pour l’Observation de la Terre. Series of optical imaging satellites with a resolution of 10 or 20 m for Earth observation.

SRTM. Shuttle Radar Topographic Mission.

VLBI. Very Long Baseline Interferometry. X-band. Radar frequency around 9 GHz with wavelength around 3 cm.

WEGENER. An SLR geodetic network around the Mediterranean.

WGS84. World Geodetic System, 1984. A system of coordinates conventionally used for (coarse) GPS coordinates. Includes an ellipsoid with inverse flattening 1/f = 298.25722 and semi-major axis = 6378.137 km [DMA, 1987].


Acknowledgments


I thank Alexis Rigo, Benoit Legresy and Didier Massonnet for helpful discussions. We thank the European Space Agency for providing most of the ERS data free of charge. GDR INSAR has been financed by l’Institut National des Sciences de l’Univers and Centre National d’Etudes Spatiales.

Bibliography of GDR INSAR and GDR STRAINSAR


Peer-reviewed publications with at least one author from our GDR:

1993-1994


Massonnet, D., and T. Rabaute, Radar interferometry: limits and potential, IEEE Trans. Geoscience & Rem. Sensing, 31, 455–464, 1993.

Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, 1993. [Cover]

Massonnet, D., K. L. Feigl, M. Rossi, and F. Adragna, Radar interferometric mapping of deformation in the year after the Landers earthquake, Nature, 369, 227–230, 1994.

Massonnet, D., M. Rossi, and F. Adragna, CNES General-purpose SAR correlator, IEEE Trans. Geosci. Rem. Sensing, 32, 636-643, 1994.

Peltzer, G., K. W. Hudnut, and K. L. Feigl, Analysis of surface displacement gradients using radar interferometry: New insights into the Landers earthquake, J. Geophys. Res., 99, 21,971–21,981, 1994.

GDR INSAR (1995-1999) – 53 peer-reviewed publications


Alsdorf, D. E., and L. C. Smith, Interferometric SAR observations of ice topography and velocity changes related to the 1996, Gjálp subglacial eruption, Iceland, International J. Remote Sensing, 20, 3031-3050, 1999.

Amelung, F., D. Galloway, J. Bell, H. Zebker, and R. Laczniak, Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27, 483-486, 1999.

Ancey, H., S. Mascle, H. Tarayre, L. Peytavin, J. A. Sirat, and M. Mariton, Valorisation des plateformes RSO: cas particulier du deroulement des franges interferometriques, Bulletin - Societe Francaise de Photogrammetrie et de Teledetection, 138, 66-72, 1995.

Avallone, A., P. Briole, C. Delacourt, A. Zollo, and F. Beauducel, Subsidence at Campi Flegrei (Italy) detected by SAR interferometry, Geophys. Res. Lett., 26, 2303-2306, 1999.

Briole, P., D. Massonnet, and C. Delacourt, Post-eruptive deformation associated with the 1986-87 and 1989 lava flows of Etna detected by radar interferometry, Geophys. Res. Lett., 24, 37-40, 1997.

Carnec, C., and H. Fabriol, Monitoring and modeling land subsidence at the Cerro Prieto geothermal field, Baja California, Mexico using SAR interferometry, Geophys. Res. Lett., 26, 1121-1214, 1999.

Cayol, V., and F. H. Cornet, Effects of topography on the interpretation of the deformation field of prominent volcanoes: Application to Etna, Geophys. Res. Lett., 25, 1979-1982, 1998.

Clarke, P. J., D. Paradissis, P. Briole, P. C. England, B. E. Parsons, H. Billiris, G. Veis, and J.-C. Ruegg, Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) earthquake, Geophys. Res. Lett., 24, 707-710, 1996.

Clarke, P. J., D. Paradissis, P. Briole, P. C. England, B. E. Parsons, H. Billiris, G. Veis, and J.-C. Ruegg, Reply to Comment by Meyer et al. on"Geodetic investigation of the May 13, 1995 Kozani-Grevena (Greece) earthquake" by P. J. Clarke et al., Geophys. Res. Lett., 25, 131-134, 1998.

Delacourt, C., P. Briole, and J. Achache, Tropospheric corrections of SAR interferograms with strong topography. Application to Etna, Geophys. Res. Lett., 25, 2849-2852, 1998.

Feigl, K. L., A. Sergent, and D. Jacq, Estimation of an earthquake focal mechanism from a satellite radar interferogram: application to the December 4, 1992 Landers aftershock, Geophys. Res. Lett., 22, 1037-1048, 1995. [Cover]

Feigl, K. L., and E. Dupré, RNGCHN: a program to calculate displacement components from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation, Computers and Geosciences, 25, 695-704, 1999. [Best Paper Award]

Fielding, E. J., R. G. Blom, and R. M. Goldstein, Rapid subsidence over oil fields measured by SAR interferometry, Geophys. Res. Lett., 25, 3215-3218, 1998. [Cover]

Fruneau, B., and J. Achache, Détection du glissement de terrain de Saint-Etienne-de-Tinée par interférométrie SAR et modélisation, Note de l'Académie des Sciences, T.320, série II a, 809-816, 1995.

Fruneau, B., J. Achache, and C. Delacourt, Observation and modelling of the Saint-Etienne-de-Tinee landslide using SAR interferometry, Tectonophysics, 265, 181-190, 1996.

Galloway, D. L., K. W. Hudnut, S. E. Ingebritsen, S. P. Phillips, G. Peltzer, F. Rogez, and P. A. Rosen, Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Water Resour. Res., 34, 2573-2585, 1998.

Hanssen, R. F., T. M. Weckwerth, H. A. Zebker, and R. Klees, High-resolution water vapor mapping from interferometric radar measurements, Science, 283, 1295-1297, 1999.

Hanssen, R., and R. Bamler, Evaluation of interpolation kernels for SAR interferometry., IEEE Trans. on Geoscience and Remote Sensing,, 37, 318-321, 1999.

Hernandez, B., F. Cotton, and M. Campillo, Contribution of radar interferometry to a two step inversion of the kinematic process of the 1992 Landers earthquake, J. Geophys. Res., 104, 13,083-13,099, 1999.

Ichoku, C., A. Karnieli, Y. Arkin, J. Chorowicz, T. Fleury, and J.-P. Rudant, Exploring the utility potential of SAR interferometric coherence images, International Journal of Remote Sensing, 19, 1147-1160, 1998.

Lu, Z., and J. Freymueller, Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska, J. Geophys. Res, 103, 29887-29894., 1998.

Lu, Z., D. Mann, and J. Freymueller, Satellite radar intererometry measures deformation at Okmok volcano, Eos Trans. Amer. Geophys. Un., 79, 461-468, 1998.

Lu, Z., R. Fatland, M. Wyss, S. Li, J. Eichelberger, K. Dean, and J. Freymuller, Deformation of New Trident volcano measured by ERS-1 SAR interferometry, Geophys. Res. Lett., 24, 695-698, 1997.

Lyuboshenko, I., and H. Maître, Phase Unwrapping for Interferometric SAR Using Helmholtz Equation Eigenfunctions and the First Green's Identity, Journal of the Optical Society of America A, 16, 378-395, 1999.

Marinelli, L., and L. Laurore, Une méthode simple de déroulement de phase appliquée à la restitution de MNT interférométrique, Bulletin de la Société Française de Photogrammétrie et Télédétection, 138, 33-38, 1995.

Massonnet, D., and K. L. Feigl, Discriminating geophysical phenomena in satellite radar interferograms, Geophys. Res. Lett., 22, 1537-1540, 1995.

Massonnet, D., and K. L. Feigl, Radar interferometry and its application to changes in the Earth's surface, Rev. Geophys., 36, 441-500, 1998.

Massonnet, D., and K. L. Feigl, Satellite radar interferometric map of the coseismic deformation field of the M = 6.1 Eureka Valley, Calfornia earthquake of May 17, 1993., Geophys. Res. Lett., 22, 1541-1544, 1995.

Massonnet, D., H. Vadon, and C. Carmona, ERS-1 Internal clock drift measured by interferometry, IEEE Trans. Geosci. Rem. Sensing, 33, 401-408, 1995.

Massonnet, D., P. Briole, and A. Arnaud, Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567-570, 1995. [Cover]

Massonnet, D., Satellite radar interferometry, Scientific American, 262, 46-53, 1997.

Massonnet, D., T. Holzer, and H. Vadon, Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry, Geophys. Res. Lett., 24, 901-904, 1997.

Meyer, B., R. Armijo, D. Massonnet, J. B. de Chabalier, C. Delacourt, J. C. Ruegg, J. Achache, and D. Papanastassiou, Comment on "Geodetic investigation on the May 13, 1995 Kozani-Grevena (Greece) earthquake" by Clarke et al., Geophys. Res. Lett., 25, 129-130, 1998.

Meyer, B., R. Armijo, D. Massonnet, J. B. de Chabalier, C. Delacourt, J. C. Ruegg, J. Achache, P. Briole, and D. Panastassiou, The 1995 Grevena (Northern Greece) earthquake: fault model constrained with tectonic observations and SAR interferometry, Geophys. Res. Lett., 23, 2677-2680, 1996.

Michel, R., and E. Rignot, Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry, J. Glaciology, 45, 1999.

Michel, R., J. P. Avouac, and J. Taboury, Measuring ground displacements from SAR amplitude images: application to the Landers earthquake, Geophys. Res. Lett., 26, 875-878, 1999.

Michel, R., J. P. Avouac, and J. Taboury, Measuring near field ground displacements from SAR images: application to the Landers earthquake, Geophys. Res. Lett., 26, 3017-3020, 1999.

P. Bernard, P. Briole, B. Meyer, H. Lyon Caen, J.-M. Gomez-Gonzalez, C. Tiberi, R. Cattin, D. Hatzfeld, C. Lachet, B. Lebrun, A. Deschamps, F. Courboulex, C. Larroque, A. Rigo, D. Massonnet, P. Papadimitriou, J. Kassaras, D. Diagourtas, K. Makropoulos and G. Veis, The Ms=6.2, June 15, 1995 Aigion earthquake (Greece): Evidence for low normal faulting in the Corinth rift., J. of Seismology, 1, 131-150, 1997.

Perlant, F., Utilisation de l'interférométrie RADAR (RSO) pour la réalisation et l'interpolation d'ortho-images, Societe Francaise de Photogrammetrie et de Teledetection, 138, 54-65, 1995.

Rigo, A., and D. Massonnet, Investigating the 1996 Pyrenean earthquake (France) with SAR Interferograms heavily distorted by atmosphere, Geophys. Res. Lett, 26, 3217-3220, 1999.

Rossi, M., B. Rogron, and D. Massonnet, JERS-1 SAR image quality and interferometric potential, IEEE Trans. Geosci. Rem. Sens., 34, 824-827, 1996.

Scharroo, R., and P. Visser, Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res., 103, 8113-8128, 1998.

Shan, X., and H. Ye, The INSAR technique: its principle and applications to mapping the deformation field of earthquake, Acta Seismologica Sinica, 11, 759-769, 1998.

Sigmundsson, F., H. Vadon, and D. Massonnet, Readjustment of the Krafla spreading center segment to crustal rifting measured by satellite radar interferometry, Geophys. Res. Lett., 24, 1843-1846, 1997.

Sigmundsson, F., P. Durand, and D. Massonnet, Opening of an eruptive fissure and seaward displacement at Piton de la Fournaise volcano measured by RADARSAT satellite radar interferometry, Geophys. Res. Lett., 26, 533-536, 1999. [Cover]

Stramondo, S. Tesauro, M., Briole, P., Sansosti, E., Salvi, S., Lanari, R., Anzidei, M., Baldi, P., Fornaro, G., Avallone, A., Buongiorno, M. F., Franceschetti, G. and Boschi, E.The September 26, 1997, Colfiorito, Italy, earthquakes: Modeled coseismic surface displacement from SAR interferometry and GPS, Geophys. Res. Lett., 26, 883-886, 1999.

Sylvander, S., and P. Gigord, Exploitation tridimensionelle d'images ERS-1, Bulletin de la Société Française de Photogrammétrie et Télédétection, 40-53, 40-53, 1995.

Trouvé, E., J.-M. Nicolas, and H. Maître, Improving phase unwrapping techniques by the use of local frequency estimates, IEEE Transactions on Geoscience and Remote Sensing, 36, 1963-1972, 1998.

Vadon, H., and F. Sigmundsson, 1992-1995 Crustal deformation at Mid-Atlantic ridge, SW Iceland, mapped by radar interferometry, Science, 275, 194-197, 1997.

Wicks, C., W. Thatcher, and D. Dzurisin, Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry, Science, 282, 458-462, 1998.

Williams, C. A., and G. Wadge, The effects of topography on magma chamber inflation models: Application to Mt. Etna and radar intererometry, Geophys. Res. Lett., 25, 1549-1552, 1998.

Wright, P., and R. Stow, Detecting mining subsidence from space, Int J Remote Sensing, 20, 1183, 1999.

Wright, T. J., B. E. Parsons, J. A. Jackson, M. Haynes, E. J. Fielding, P. C. England, and P. J. Clarke, Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling, Earth Plan. Sci. Lett., 172, 23-27, 1999.


Yüklə 379,02 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin