1 1 . 1 - m i s o l . B ir u c h i q i s t ir ib m a h k a m la n g a n b a l k a n i n g ik k in c h i u c h i g a
b o s h t e k i s l i k x y b i la n a = 3 0 0 b u r c h a k t a s h k i l e tu v c h i F = 1 2 k H k u c h
q o ‘y il g a n . B a lk a n in g u z u n lig i I
=
l m , к о ‘n d a l a n g k e s im i t o m o n la r i b h b o 'Igan
t o ' g ' r i t o ' r t b u r c h a k , b
=
0 , 6 h v a r u x s a t e t i l g a n k u c h l a n is h [ a ]
=
1 2 0
H _
M P a = 1 2 0 - 1 0 6
m 2
= \ 2 k H / s m 2. B a lk a n in g o ' lc h a m l a r i a n iq la n s in ( 1 1 .2 - r a s m ) .
✓
/
/
/
/
l
1
r F
/
/
Y echish. Eng katta eguvchi moment tayanch kesimida vujudga keladi
Мша, = Ғ / = 12
100 = 1200 kH sm.
Vertikal tekislik b o ‘yicha ta ’sir etayotgan ushbu momentni, kesimning
bosh o‘qlari
у
va z b o ‘yicha tuzuvchilarga ajratamiz:
M2 = 1200,00 cos30° = 1200,00
0,866 = 1040,00 kH • sm,
Mv = 1200,00 sin30° = 1200,00
0,5 = 600,00 kH • sm.
Eng katta kuchlanishlar В va С nuqtalarida hosil bo‘ladi va absolut
qiymatlari o ‘zaro teng boMadi.
J
_ h
_ в Л
& У
-
z - ~ z
nuqtasidagi kuchlanishni aniqiaymiz:
\
2
2
J
My va
M z
momentlaming qiymatini o ‘z o ‘rniga qo‘yamiz, maksimal kuch-
lanishning absolut qiymatini ruxsat etilgan kuchlanishga tenglashtiramiz:
„ л п
6 - 1 0 4 0 ,0 0 ,6 - 6 0 0 ,0 0
,
5 2 , 0 . 3 0 , 0
Dostları ilə paylaş: |