Phd fellowship: Deep learning-based algorithms for spectral ct keywords



Yüklə 16,69 Kb.
tarix18.04.2018
ölçüsü16,69 Kb.
#48811


Centre de Recherche en Imagerie Médicale

www.creatis.insa-lyon.fr








PhD Fellowship: Deep learning-based algorithms for spectral CT

Keywords Deep learning, convolutional neural network, spectral computed tomography (CT).

Context CREATIS is a research unit of CNRS/INSERM/INSA Lyon/University of Lyon devoted to medical imaging. The candidate will join the Tomographic Imaging and Radiotherapy team, which has internationally recognized expertise in X-ray imaging and inverse problems.

Project Spectral computed tomography (CT) is a new imaging modality that can resolve the concentration of the constituents of the human body (e.g., bone, water, fat) or contrast agents [1]. The spectral CT reconstruction problem is usually addressed as a (nonlinear) inverse problem, which requires the knowledge of source and detector response functions [2]. However, these are generally unknown or difficult to model.

We propose to overcome these difficulties by constructing new reconstruction algorithms based on deep learning. Deep learning has been forecasted as one the 10 breakthrough technologies of 2017 [3] and is proving to be one of the most powerful techniques in computer vision, with promising results in biomedical applications [4]. Just recently, several authors proposed to use these techniques for learning inverse problems [5], [6].



Research Program The goal of this thesis is to develop new algorithms based on deep learning for improving image quality in spectral CT. There are two specific objectives: learning the nonlinearities and circumvent modelling the source and detector response functions, and designing specific deep iterative learning algorithms for spectral CT. We will investigate various deep learning architectures [3] and compare them to model-based approaches. The successful candidate will:

  • Contribute to the development of our in-house Matlab toolbox

  • Implement deep learning methods using TensorFlow

  • Compare with existing methods using simulated and experimental data

  • Collaborate with CPPM (Marseille) and UCL (CMIC, London, UK)


Skills The student must have a strong background image processing and deep learning. Knowledge in inverse problems, medical imaging and radiation physics is a plus. Programming skills: Matlab, Python.

Practical information

  • The thesis will take place at CREATIS, Lyon, France.

  • Three-year funding starting in September 2018.

  • The salary about €1500 net monthly (doctoral school EEA de l’Univerité de Lyon)


How to apply?
Send both your CV and academic records to

  • Francoise Peyrin francoise.peyrin@creatis.insa-lyon.fr

  • Nicolas Ducros nicolas.ducros@creatis.insa-lyon.fr

  • Juan FPJ Abascal juan.abascal@creatis.insa-lyon.fr



Reference

[1] K. Taguchi et al, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Medical Physics, 40, 100901, 2013.

[2] N. Ducros et al. “Regularization of nonlinear decomposition of spectral X-ray projection images” Medical Physics, 44, 9, e174-e187, 2017.

[3] “10 Breakthrough Technologies 2017 - MIT Technology Review.” [Online]. Available: https://www.technologyreview.com/lists/technologies/2017/.

[4] Y. LeCun et al. “Deep learning”, Nature 521, 436–444, 2015.

[5] O. Öktem and J. Adler, “Solving ill-posed inverse problems using iterative deep neural networks,” Inverse Probl., 2017.

[6] S. Yu et al., “Deep De-Aliasing for Fast Compressive Sensing MRI,” May 2017.


Site Université Lyon 1 – ESCPE :

Campus LyonTech la Doua – Université Lyon1, ESCPE

3, rue Victor Grignard

69616 Villeurbanne Cedex, France

Tél. : +33 (0)4 72 44 80 84 / +33 (0)4 72 44 80 15

Fax : +33 (0)4 72 44 81 99

e-mail : prénom.nom@creatis.univ-lyon1.fr


Site INSA : CREATIS - Direction

Campus LyonTech la Doua – INSA de Lyon

Bât. Blaise Pascal - 7 avenue Jean Capelle

69621 Villeurbanne Cedex, France

Tél. : +33 (0)4 72 43 82 27

Fax : +33 (0)4 72 43 85 96


e-mail : prénom.nom@creatis.insa-lyon.fr


Site Hospitalier :

Hôpital Louis Pradel,

28 avenue du Doyen Lépine,

69677 Bron Cedex, France

Tél. : +33 (0)4 72 68 49 09

Fax : +33 (0)4 72 68 49 16



e-mail : prénom.nom@creatis.univ-lyon1.fr



Yüklə 16,69 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin