shartlarni qanoatlantirsa, u holda f’(c)=0 bo‘ladigan kamida bitta c (a) nuqta mavjud bo‘ladi.
Isboti. Ma’lumki, agar f(x) funksiya [a;b] kesmada uzluksiz bo‘lsa, u holda funksiya shu kesmada o‘zining eng katta M va eng kichik m qiymatlariga erishadi. Qaralayotgan f(x) funksiya uchun ikki hol bo‘lishi mumkin.
1. M=m, bu holda [a,b] kesmada f(x)=const va f’(x)=0 bo‘ladi. Ravshanki, f’(c)=0 tenglamani qanoatlantiradigan nuqta sifatida s(a;b) ni olish mumkin.
1. M=m, bu holda [a,b] kesmada f(x)=const va f’(x)=0 bo‘ladi. Ravshanki, f’(c)=0 tenglamani qanoatlantiradigan nuqta sifatida s(a;b) ni olish mumkin.
2. M>m, bu holda teoremaning f(a)=f(b)shartidan funksiya M yoki m qiymatlaridan kamida birini [a,b] kesmaning ichki nuqtasida qabul qilishi kelib chiqadi. Aniqlik uchun f(c)=m bo‘lsin. Eng kichik qiymatning ta’rifiga ko‘ra x[a,b] uchun f(x) f(c) tengsizlik o‘rinli bo‘ladi.
Endi f’(c)=0 ekanligini ko‘rsatamiz. Teoremaning ikkinchi shartiga ko‘ra f(x) funksiya (a;b) intervalning har bir x nuqtasida chekli hosilaga ega. Bu shart, xususan c nuqta uchun ham o‘rinli. Demak, Ferma teoremasi shartlari bajariladi. Bundan f’(c)=0 ekanligi kelib chiqadi.
f(c)=M bo‘lgan holda teorema yuqoridagi kabi isbotlanadi.