Sequential drug decision problems in long-term medical conditions: a case Study of Primary Hypertension Eunju Kim ba, ma, msc


WHILE ~Finished; % Repeat until the following stopping rules are satisfied. IF



Yüklə 10,52 Mb.
səhifə88/116
tarix04.01.2022
ölçüsü10,52 Mb.
#58520
1   ...   84   85   86   87   88   89   90   91   ...   116
WHILE ~Finished; % Repeat until the following stopping rules are satisfied.

IF itry >= MaxTries || Success >= MaxSuccess;

IF T = MaxConsRej; Break;

ELSE

T = CoolSched (T); % Update T according to cooling schedule.



END
NewParam = Generator (Parent); % Generate a new solution.

IF pertc == 30 % Every 30 repetitions, jump to another area.

NewParam = NewParam + randi([-1000,1000]);



END
NewReward = EvModel(NewParam); % Evaluate the new solution.

incNewReward = NewReward - OldReward;


% If the new solution is better than the old solution, accept the new solution.

IF (incNewReward > 1e-6)

Parent = NewParam; OldReward = NewReward;


% Otherwise, accept the new solution with a probability obtained from the Boltzman distribution.

ELSE

IF (rand > exp(-incNewReward/(k*T) ));

Parent = NewParam; OldReward = NewReward;



END

END

END
% Decide the optimal solution and the reward where the optimal solution is used.

OptSol = Parent; OptV = OldReward;



Figure ‎6.. Pseudo-code of the SA used for the hypertension SDDP model

Yüklə 10,52 Mb.

Dostları ilə paylaş:
1   ...   84   85   86   87   88   89   90   91   ...   116




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin