Thèse présentée devant l’insa de Rennes en vue de l’obtention du doctorat d’Électronique



Yüklə 445 b.
tarix26.10.2017
ölçüsü445 b.
#13609


  • Thèse présentée devant l’INSA de Rennes en vue de l’obtention du doctorat d’Électronique


Foreword

  • R&D Unit

    • Broadband Wireless Acces / Innovative Radio Interface (RESA/BWA/IRI)
  • Supervisor

    • Maryline HELARD, R&D engineer HDR at France Telecom R&D division
  • Context

    • Internal project: SYCOMORE (research on digital communications)
    • European project: IST 4-MORE (4G demonstrator based on MIMO and MC-CDMA techniques)


Outline

  • Introduction

  • Multi-antenna techniques

  • Generic iterative receiver

  • Optimal space-time coding

  • Application to MC-CDMA

  • Conclusion





Context

  • Digital wireless communications

    • High spectral efficiency
    • Robustness
  • Radio-mobile application

    • Multi-path propagation
    • Mobility
    • Multi-user access


Multi-antenna (MIMO) transmissions

  • Principle

    • Multi-antenna at transmitter and receiver
  • MIMO capacity [Telatar 95]



Multi-antenna (MIMO) transmissions

  • Motivations

    • Spectral efficiency gain
    • Performance gain
      • Spatial diversity gains
      • Antenna array gains
  • Limits

    • Interference terms
      • Co Antenna Interference (CAI)
    • Spatial correlation
      • Antennas must be sufficiently spaced
      • Rich scattering environment required
    • Optimal MIMO capacity exploitation
      • Complex algorithm not well suited for practical implementation
      • Lack of generic schemes


Objectives

  • Multi-antenna transmission

    • Spectral efficiency gain
    • Arbitrary antenna configuration
  • Near-optimal reception

    • MIMO capacity exploitation
    • Iterative (turbo) principle
    • Low complexity algorithm
    • Multi-user access




Transmitter



MIMO channel

  • Multi carrier approach (OFDM)



MIMO channel

  • Equivalent flat fading MIMO channel



Classification of MIMO techniques

  • CSI required at Tx and Rx

  • CSI required only at Rx

    • Treillis based
    • Block based
  • No CSI required

    • Differential STC
    • USTM


Classification of MIMO techniques

  • CSI required at Tx and Rx

    • Eigen beam forming
    • Water-filling
    • Pre-equalization
  • CSI required only at Rx

    • Treillis based
    • Block based
  • No CSI required

    • Differential STC
    • USTM


Classification of MIMO techniques

  • CSI required at Tx and Rx

    • Eigen beam forming
    • Water-filling
    • Pre-equalization
  • CSI required only at Rx

    • Treillis based
    • Block based
  • No CSI required

    • Differential STC
    • USTM


LD Code



Equivalent representation



Special LD Code



Solution

  • Transmission matrices

  • Reception matrices

  • Equivalent channel matrix



Example: Alamouti Code over channel

  • Transmission matrices

  • Equivalent model



Co-antenna interference





Reception state of the art

  • Optimal solution: joint detection

    • ML detection based on a “super trellis”
  • Sub-optimal solution

    • Disjoint decoding: MIMO detection channel decoding
      • MAP MIMO detection
      • SIC, OSIC, PIC detection
      • MRC, MMSE, ZF equalization
    • Iterative decoding: MIMO detection channel decoding [Berrou et al. 93]
      • MAP MIMO detection
        • [Tonello 00, Boutros et al. 00, Vikalo et al. 02]
      • Filtered based MIMO equalization
        • [Sellathurai et al. 00, Gueguen 03, Witzke et al. 03]


Reception state of the art

  • Optimal solution: joint detection

    • ML detection based on a “super trellis”
  • Sub-optimal solution

    • Disjoint decoding: MIMO detection channel decoding
      • MAP MIMO detection
      • SIC, OSIC, PIC detection
      • MRC, MMSE, ZF equalization
    • Iterative decoding: MIMO detection channel decoding [Berrou et al. 93]
      • MAP MIMO detection
        • [Tonello 00, Boutros et al. 00, Vikalo et al. 02]
      • Filtered based MIMO equalization
        • [Sellathurai et al. 00, Gueguen 03, Witzke et al. 03]


Principle

  • Application of the turbo-equalization concept to MIMO



MIMO equalizer (1)

  • MMSE based soft interference cancellation (MMSE-IC)

    • [Glavieux et al. 97, Wang et al. 99, Reynolds et al. 01, Tüchler et al. 02, Laot et al. 05]
  • MMSE optimization of both filters



MIMO equalizer (2)

  • Optimal solution: MMSE-IC

  • Time invariant approximation: MMSE-IC(1)



MIMO equalizer (3)

  • Matched filter approximation: MMSE-IC(2)

  • Zero-Forcing solution: ZF-IC



Complexity analysis (MIMO equalizer)



Asymptotical analysis

  • Asymptotical performances = Genie aided receiver

  • Asymptotical equivalent channel



Asymptotical diversity

  • Pair-wise error probability

  • Chi-square approximation and Chernoff bound



Asymptotical diversity

  • Proposed definition of the space-time diversity

  • Total diversity exploited by both channel and space-time coding

    • Modified Singleton Bound [Gresset et al. 04]


Performance results: simulation conditions

  • Theoretical independent T-Block Rayleigh flat fading MIMO channel

  • Non recursive non systematic convolutional code (133,171)o, K=7

  • SOVA algorithm for channel decoding

  • No spatial correlation

  • Normalized BER

  • Asymptotical curve: Matched filter Bound (MFB)

  • Optimal curve: AWGN decoupled



Performance results: Jafarkhani code



Performance results: SDM



Performance results: SDM overloaded



Synthesis

  • Derivation of a MMSE iterative receiver for generic MIMO transmission

    • Reduced complexity versus MAP based iterative algorithm
  • Asymptotical analysis

    • Proposition of an estimation of the space-time coding diversity
  • Simulation results

    • MMSE-IC(1) tends towards the MFB curve whichever space-time coding scheme is used
    • MMSE-IC(1) still works in case of rank degenerated channel matrix
    • MMSE-IC(2) and ZF-IC converge when CAI terms are quite low and/or for small order modulation




Optimality conditions

  • Maximizing data rate

  • Maximizing space-time coding diversity

  • Minimizing and

  • Minimizing the non orthogonal terms of



Optimality conditions

  • Maximizing data rate

  • Maximizing space-time coding diversity

  • Minimizing and

  • Minimizing the non orthogonal terms of



Maximizing data rate

  • Ergodic Capacity

  • High SNR approximation (Foschini et al. 96)



Maximizing the diversity

  • Assuming ML detection

    • Pairwise error probability analysis
    • Diversity gain maximization
    • TAST [El Gamal et al. 03], FDFR [Ma et al. 03]
  • Assuming MMSE-IC reception

    • Asymptotical analysis
    • Space-time coding diversity maximization
    • Sufficient condition:Along a space-time coded block, each data symbol must be transmitted uniquely by each antenna


Summary

  • Conditions:

  • STC construction rule:

    • “During Nt symbol durations, min(Nt,Nr) data symbols have to be uniquely transmitted by the Nt antennas”


Diagonal Threaded Space Time (DTST) coding



Example over a channel



Performance results

  • 4 transmit antennas and 2 receive antennas

  • Channel model: T-block Rayleigh flat fading

  • No spatial correlation

  • Reception

    • If S is orthogonal: MRC
    • If S is non orthogonal: MMSE-IC with 5 iterations
  • Optimal performance: AWGN decoupled

    • Corresponds to virtual parallel AWGN channels


System Parameters



Ergodic capacity



BER Performance



Capacity at BER=10-4







MC-CDMA

  • Introduced in 93 [Yee et al. 93, Fazel et al. 93]

  • Aim

    • to spread multi-user information in the frequency domain
  • Principle

    • Combination of CDMA and OFDM techniques
  • Benefits

    • Robustness against multi-path channels
    • Multi-user flexibility
    • Low multi-access interference (MAI) in downlink scenario


MIMO MC-CDMA Transmitter



Equivalent model

  • Equivalent channel matrix

  • Receive signal

  • Receiver algorithm

    • Since S’ is a special LD code, proposed MMSE-IC receiver can be used


Multi-user iterative receiver

  • MMSE-IC (1) solution

  • Full load approximation



Performance results: 4x2 Bran E channel

  • Bran E model



Performance results: 4x2 Bran E channel

  • DA code



Performance results: 4x2 Bran E channel



Performance results: 4x2 Bran E channel







General conclusion

  • MIMO capacity can be efficiently exploited by iterative processing

  • MMSE-IC based solutions lead to low complexity algorithm (especially comparing to MAP based solution)

    • High order modulations are suitable
    • High number of antennas can be considered
  • MMSE-IC receiver can be derived for MC-CDMA transmission

  • The behavior of MMSE-IC receiver over realistic channel including channel estimation is satisfactory



Major contributions

  • Proposition and analysis of a MIMO iterative receiver

    • Generic structure
    • Reduced complexity algorithms
    • Theoretical analysis (complexity and asymptotical behavior)
  • Proposition of new optimal LD codes

    • DTST
  • Application of iterative reception

    • MC-CDMA
    • Linear precoding
  • Performance results

    • Theoretical channels
    • Realistic channels (channel estimation and spatial correlation)


Future prospects

  • Iterative channel estimation

    • Joint channel estimation and decoding
  • Turbo-codes instead of convolutional codes as channel coding

    • Multi-loop iterative scheme
  • Real channels

    • Realistic spatial correlation model
  • Application to OFDMA

  • Implementation issues



Publications and patents

  • International Conference

    • P-J. Bouvet and M. Hélard, «Near optimal performance for high data rate MIMO MC-CDMA scheme», MC-SS 05
    • B. Le Saux, M. Hélard and P-J. Bouvet, « Comparison of coherent and non-coherent space time schemes for frequency selective fast-varying channels », IEEE ISWCS 05
    • P-J. Bouvet, M. Hélard and V. Le Nir, «Low complexity iterative receiver for linear precoded OFDM», IEEE WiMob 05
    • P-J. Bouvet and M. Hélard, «Efficient iterative receiver for spatial multiplexed OFDM system over time and frequency selective channels», WWC 05
    • P-J. Bouvet, M. Hélard and V. Le Nir, «Low complexity iterative receiver for non-orthogonal space-time block code with channel coding», IEEE VTC Fall 04
    • P-J. Bouvet, V. Le Nir, M. Hélard and R. Le Gouable, «Spatial multiplexed coded MC-CDMA with iterative receiver» IEEE PIMRC 04


Publications and patents

  • International Conference (cont’d)

    • P-J. Bouvet, M. Hélard and V. Le Nir, «Low complexity iterative receiver for linear precoded MIMO systems», IEEE ISSSTA 04
    • M. Hélard, P-J. Bouvet, C. Langlais, Y. M. Morgan and I. Siaud, «On the performance of a Turbo Equalizer including Blind Equalizer over Time and Frequency Selective Channel. Comparison with an OFDM system», Symposium Turbo 03
    • C. Langlais, P-J. Bouvet, M. Hélard and C. Laot, «Which Interleaver for turbo-equalization system on frequency and time selective channels for high order modulations ? », IEEE SPAWC 03
  • National conference

    • B. Le Saux, M. Hélard and P.-J Bouvet, «Comparaison de technique MIMO cohérents et non-cohérentes sur canal rapide sélectif en fréquence», MajeSTIC 05


Publications and patents

  • Patents

    • P-J Bouvet and M. Hélard, « Procédé d’émission d’un signal ayant subi un précodage linéaire, procédé de réception, signal, dispositifs et programmes d’ordinateur correspondant », Nov. 05
    • J-P. Javaudin and P-J. Bouvet, «Procédé de codage d'un signal multiporteuse de type OFDM/OQAM utilisant des symboles à valeurs complexes, signal, dispositifs et programmes d'ordinateur correspondants», May 05
    • J-P. Javaudin and P-J. Bouvet, «Procédé de décodage itératif d'un signal OFDM/OQAM utilisant des symboles à valeurs complexes, dispositif et programme d'ordinateur correspondants», May 05
    • P-J. Bouvet and M. Hélard, «Procédé de réception itératif d'un signal multiporteuse à annulation d'interférence, récepteur et programme d'ordinateur correspondants», March 05


Publications and patents

  • Patents (cont’d)

    • P-J. Bouvet, M. Hélard and V. Le Nir, « Procédé de réception itératif pour système de type MIMO, récepteur et programme d'ordinateur correspondants », Nov. 04
    • P-J. Bouvet, V. Le Nir and M. Hélard, « Procédé de réception d'un signal ayant subi un précodage linéaire et un codage de canal, dispositif de réception et produit programme d'ordinateur correspondants », Jun. 04
    • M. Hélard, P-J. Bouvet, V. Le Nir and R. Le Gouable, « Procédé de décodage d'un signal codé à l'aide d'une matrice espace-temps, récepteur et procédé de codage et décodage correspondant », Sept. 03




Yüklə 445 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin