Dərsin üsulu: Beyin həmləsi, Klaster. İş forması: Qruplarla iş. Dərsin təşkili Sinfin təşkili, qrupların təşkili



Yüklə 21.83 Kb.
tarix21.10.2017
ölçüsü21.83 Kb.

Mövzu: Perimetr

Məqsəd: Şagirdlərin perimetrin tərəflərin uzunluqları cəmini ifadə etdiyini anlamaq və fiqurun tərəflərinin xassələrindən istifadə etməklə perimetri hesablamaq.

Təchizat: Dərslik, riyaziyyata aid audiovizual dərs vəsaiti və işçi vərəqləri.

Dərsin üsulu: Beyin həmləsi, Klaster.

İş forması: Qruplarla iş.

Dərsin təşkili

1. Sinfin təşkili, qrupların təşkili

2. Motivasiya

3. Tədqiqatın aparılması

4. Məlumatın mübadiləsi

5. Nəticənin çıxarılması

6. Tətbiqetmə

7. Qiymətləndirmə

Dərsin gedişi

Sinfə daxil olub, şagirdlərlə salamlaşdıqdan sonra onları dörd qrupa ayirmalı, qrupları adlandırmalı.

1-ci qrup: Səma

2-ci qrup: Göyqurşağı

3-cü qrup: Ulduz

4-cü qrup: Günəş

Qrupları öz yerlərində əyləşdirmək. Müəllim tərəfindən problemi qoymaq.

Motivasiyanın təşkili. Şagirdlərlə motivasiya yaratmaq üçün problemi yaratmaq. Duzbucaqlı formasında olan futbol meydançasının kənarlarına çəkilmiş hasarın uzunluğunu necə hesablamaq olar?

Şagirdlər problem haqqında düşünürlər. Hazır olan qrup cavaba hazır olduğunu bildirir.

Səma qrupunun lideri cavab verir. Meydançanın kənarlarını hesabla-maq üçün onun enini və uzunluğunu bilməliyik. Hasarın uzunluğunu tap-maq üçün dörd tərəfinin cəmini tapmaq lazımdır.

Göyqurşağı qrupunun lideri cavab verir. Düzbucaqlı formasında olan futbol meydançasının enini və uzunluğunu 2-yə vurub toplasaq hasarın uzunluğunu tapmış olarıq.

Ulduz qrupunun lideri cavab verir. Meydançanın tərəflərinin uzunluqları cəmini tapdıqdan sonra, cəmdən meydançanın qapısının uzunluğunu çıxmaq lazımdır.

Günəş qrupunun lideri cavab verir.Meydança düzbucaqlı formasında olduğundan qarşı tərəfləri bərabərdir. Onun enini və uzunluğunu 2-yə vu-rub toplamaq lazımdır. P=2a+2b burada a düzbucaqlının eni, b isə uzun-luğudur.

Tədqiqatın aparılması. Bütün deyilənlər məsələ əsasında araşdırılır. Meydançanın eni 12 m, uzunluğu 20 m,qapısının eni 2 m olarsa, hasarın uzunluğu P=12×2+20×2=24+40=64 m 64 m-2 m=62 m

Deməli hasarın uzunluğu 62 m olar. Sonra düzbucaqlı üçün perimetr düs-turu əsasında digər dördbucaqlılar və üçbucaqlar üçün perimetr düsturu şəkil əsasında çəxarılır.



Kvadrat

Kvadratın bütün tərəfləri bərabər olduğu üçün onun perimetri P=4a düsturu ilə hesablanır. Burada a kvadratın tərəfidir.



Romb

Rombun da bütün tərəfləri bərabər olduğuna görə perimetri P=4a düsturu ilə hesablanır. Burada a rombun tərəfidir.



Paraleloqram

Paraleloqramın qarşı tərəfləri bərabər olduğuna görə onun perimetri P=2a+2b düsturu ilə hesablanır. Burada a paraleloqramın eni, b isə uzunluğudur.



Trapesiya

Trapesiyanın perimetri P=a+b+c+d düsturu ilə hesablanır. Burada a və c trapesiyanın yan tərəfləri, b və d isə trapesiyanın oturacaqlarıdır.



Bərabərtərəfli üçbucaq

Bərabərtərəfli üçbucağin üç tərəfi də bərabər olduguna görə onun perimetri P=3a düsturu ilə hesablanır.Burada a üçbucağın tərəfidir.



Bərabəryanlı üçbucaq:

Bərabəryanlı üçbucağın perimetri P=2a+b düsturu ilə hesablanır. Burada

a üçbucağın yan tərəfi, b isə üçüncü tərəfidir.

Müxtəliftərəfli üçbucaq

Müxtəliftərəfli üçbucağın perimetri P=a+b+c düsturu ilə hesablanır. Bu- rada a, b, c üçbucağın tərəfləridir

Məlumatın mübadiləsi. Müəllim mövzunun tam qavranılması məqsədi ilə qruplara işçi vərəqləri paylayır.

Hər bir qrup öz işini təqdim edir. İşlər müzakirə olunur. Müzakirədən sonra meyarlar üzrə qiymətləndirmə aparılır.

Ev tapşırığı: səh 122 çalışma 3, 4

Fənn müəllimi: Musayeva K.

Dərs hissə müdiri: Əsədova Z.

Səma qrupu:

1) Eni 8 sm və perimetri 48 sm olan düzbucaqlının uzunluğunu tapın.

2) BCDH kvadratının perimetri 48 sm, GHEF kvadratının perimetri isə 80 sm-dir. ACDHEF fiqurunun perimetrini tapın.

Ulduz qrupu:

1) Uzunluğu 13 sm, eni 48 sm olan düzbucaqlının perimetrini tapın.

2) Tərəfi 3 sm olan bərabərtərəfli üçbucağın perimetrini hesablayın.

Göyqurşağı qrupu:

1) Tərəfinin uzunluğu 25 m olan kvadrat şəkilli sahəni hasara aldılar. Hasarın uzunluğu nə qədərdir?

2) Uzunluğu 24 m, eni 15 m olan bağın kənarlarına 3 m məsafə ilə ağac əkilir. Ağaclar düzbucaqlı şəklində bağın künclərindən başlayaraq əkilərsə neçə ağac lazım olar?

Günəş qrupu:

1) Perimetri 96 sm olan kvadratın tərəfini tapın.

2) Perimetri 72 sm olan bərabərtərəfli üçbucağın tərəfini tapın.

Protokol

18.12.2014-cü il tarixdə M.Əzizbəyov adına 15№ li tam orta məktəbin riyaziyyat müəllimi Musayeva Könül Nizami qızının 51 sinfində riyaziyyat dərsindən açıq dərsi oldu.

Dərsdə iştirak etdi:

Dərs hissə müdiri: Z.Əsədova, üsulbirləşmə sədri: K.Musayeva, riyaziyyat müəllimləri: G. Məmmədova, S. İbrahimova.

Gündəlik məsələ:

Məktəbin riyaziyyat müəllimi Musayeva Könülün 51 sinfində riyaziyyatdan “ Perimetr” mövzusundadediyi açıq dərsin müzakirəsi

Eşidildi: Riyaziyyat müəllimi Musayeva Könül riyaziyyat fənnindən 51 sinfində dediyi açıq dərsdə bildirdi ki, riyaziyyat hər gün həyatda istifadə edilən bir fəndir. Elmin elə bir sahəsi yoxdur ki,orada riyaziyyatdan istifadə edilməsin. Perimetr düsturlarını bilməklə şagirdlər real situasiyalarauyğun məsələlərin həllini cəld yerinəyetirməyə malik olurlar. Bütün fənlər kimi riyaziyyatı da bilmək uşaqlar üçün vacibdir. Bu gün tədris etdiyim “Perimetr” mövzusu imkan verir ki, uşaqlar fiqurların tərəflərininxassələrindən istifadə etməklə periumetri uyğun düsturla ifadə etsinlər,tələb olunan ölçmələri yerinə yetirməklə perimetri hesablasınlar və nüstəqil fikirlərini yürütsünlər.

Çixışlar.

1. Riyaziyyat müəllimi G. Məmmədova bildirdi ki, dərs şagirdlərin yüksək fəallığı ilə müşahidə olundu. Şagirdlər dərsi mənimsəyə bildilər.

2. Riyaziyyat müəllimi S. İbrahimova qeyd etdi ki, dərs peosesendə bütün şagirdlər aktiv iştirak etdilər. Mövzu şagirdlər tərəfindən yaxşı mənimsənildi.

Qərar: Riyaziyyat müəllimi Musayeva Könül dediyi açıq dərsdə öz məqsədinə nail oldu. Mövzu şagirdlər tərəfindən mənimsənildi. Dərs qənaət bəxş etsin.

Sədr: Musayeva K.

Katib: İbrahimova S.



M.Əzizbəyov adına 15№ li məktəbin riyaziyyat

müəllimi Musayeva Könülün 51 sinfində riyaziyyatdan keçdiyi

açıq dərsin icmalı.





Dostları ilə paylaş:


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2017
rəhbərliyinə müraciət

    Ana səhifə