Engineering Self-Modelling Systems: Application to Biology Carole Bernon, Davy Capera*, Jean-Pierre Mano



Yüklə 445 b.
tarix30.01.2018
ölçüsü445 b.
#41227


Engineering Self-Modelling Systems: Application to Biology

  • Carole Bernon, Davy Capera*, Jean-Pierre Mano

  • SMAC Team (Cooperative Multi-Agent Systems)

  • Institut de Recherche en Informatique de Toulouse

  • *UPEtec

  • www.irit.fr/SMAC - www.upetec.fr


Outline

  • Making complex systems self-build

    • Self-organisation by cooperation
    • Four-layer model
  • A domain of application: Biology

    • microMega specific case
    • Agents and Biology
  • Model applied to microMega

    • Architecture
      • Agents
      • Behaviours
    • Preliminary results
  • Conclusion



Statement

  • Systems: more and more complex

  • Environments: more and more open and dynamic

  • Biological domain is no exception

    • Huge volumes of data
      • To be gathered, processed, exploited, visualised…
    • Interaction networks
      • Large-scale
      • Interactions are incompletely known
      • Experimental data incomplete and heterogeneous
    • Model integration
      • Building a whole
      • By assembling coupled parts
      • In order to explain a higher level of functioning


Towards Self-building Systems

  • Complexity  “autonomic computing” [IBM03]

  • Alleviate the designer’s task

  • Let the system self-build

  • Autonomous change of the organisation of the system

  • Autonomous change of the behaviour of its components

    • Ability to learn what is unknown (or incompletely known)
    • Ability to interact in a different way
    • Ability to appear/disappear


Self-organisation by Cooperation

  • Adaptive Multi-Agent Systems theory [Camps98, Capera03]

  • Social attitude of agents

    • Perceive: Perceptions are understood without ambiguity
    • Decide: Perceptions enable conclusion(s)
    • Act: Actions are useful for the environment (and itself)
  • A cooperative agent acts to

    • Avoid
    • Prevent
    • Remove
  • situations that it judges as being cooperative failures



Four-layer Model



Outline

  • Making complex systems self-build

    • Self-organisation by cooperation
    • Four-layer model
  • A domain of application: Biology

    • microMega specific case
    • Agents and Biology
  • Model applied to microMega

    • Architecture
      • Agents
      • Behaviours
    • Preliminary results
  • Conclusion



Complexity and Biological Systems

  • Theories are often missing

  • Modelling and simulation (Gepasi [Mendes93], Copasi…)

  • Different approaches

    • Mathematical models
    • Petri nets
    • Cellular automata
    • Neural networks
  • Drawbacks

    • Black boxes
    • Models often static
    • Far from a biological reality


microMega

  • National project

    • LISBP, INSA  biologists
      • « Génie microbiologique » team
      • « Physiologie microbienne des eucaryotes » team
    • LAAS, Disco team  mathematicians
    • LSP, UPS  statisticians
  • Multi-agent modelling of the genetic-metabolic interaction of a yeast (Saccharomyces Cerevisiae)

  • From:

    • Transcriptomic data: genes
    • Macroscopic data: components
  • In order to get free from experimental conditions

  • Feasibility study



Agents and Biology

  • Agent and multi-agent technologies are rising [Lints05, Merelli06, Amigoni07]

  • Bioinformatics [Luck05] or systems biology

    • Protein folding/docking [Armano05, Bortolussi05]
    • Pathways [Khan03, Gonzalez03, Querrec03]
    • Cell simulation [Webb06, Lints05, Boss06, Jonker08]
    • Cell population simulation [Emonet05, Troisi05, D’Inverno05, Guo07]
  • Discover new phenomena?

    • Organisation is often fixed in MAS
    • Laws considered as known
    • Disruptions are not taken into account
      • Some exceptions [Querrec03, Shafaei08]


Modelling Approach



Outline

  • Making complex systems self-build

    • Self-organisation by cooperation
    • Four-layer model
  • A domain of application: Biology

    • microMega specific case
    • Agents and Biology
  • Model applied to microMega

    • Architecture
      • Agents
      • Behaviours
    • Preliminary results
  • Conclusion



Architecture of microMega

  • AMAS simulating chemical reactions

  • Two kinds of cooperative agents

    • Functional agents
      • Physical elements
      • Reactions
      • Interactions
        • Element consumption/production
        • Reactions regulation
    • Viewer agents
      • Interactions with users
      • Data injection
      • Specific constraints


Functional Agents

  • Elements

    • Represent common attributes for each element within the cell
    • Quantity associated
  • Reactions

    • Genes
    • Transporters
      • Move an element quantity from one compartment to another
      • Passive / Active (ATP consumption)
    • Catalysis
      • Transform a metabolite quantity into two
      • Catalysis may be regulated
    • Synthesis
      • Assemble two metabolites
      • Synthesis may be regulated


Example

  • 1 Fructose1,6DP + 2 ADP + 2 NAD+ -> 2 Pyruvates + 2 ATP + 2 NADH,H+



Viewer Agents

  • ElementViewerAgent

    • Gather quantities of a list of element agents
  • ElementSetterAgent

    • Control activity of a list of element agents
    • Database of experimental quantities
  • But also…

    • Evaluate biomass
      • Sum of the quantities of all element agents
    • Identify compartments within the cell
      • If the system is able to reorganise
      • Manage user’s constraints


Nominal Behaviour of Agents

  • Element agents

    • Manage related element quantity depending on feedback from reaction agents
    • Linked to a compartment
  • Reaction agents

    • Consume/product element agents depending on:
      • Stoichiometry
      • Contextual reaction speed (possible regulations)
  • Viewer agents

    • Access data of functional agents
    • Store these data
    • Compute error related to experimental data


Tuning Behaviour of Agents



Reorganisation Behaviour of Agents



Example: Glycolysis



Preliminary Results

  • Nominal functioning only

  • Adaptive behaviour

  • Memory of previous states



Outline

  • Making complex systems self-build

    • Self-organisation by cooperation
    • Four-layer model
  • A domain of application: Biology

    • microMega specific case
    • Agents and Biology
  • Model applied to microMega

    • Architecture
      • Agents
      • Behaviours
    • Preliminary results
  • Conclusion



Conclusion - Prospects

  • Feasibility demonstration

    • Self-building model
    • Self-tuning model
  • Model still incomplete

  • Exhibits adaptation abilities

  • Self-building = key for managing complexity

  • Emergence = key for this self-building

  • Finalise cooperative layers

  • Overcome problems related to noise (forget)

  • Validate models obtained on different experimental data



Engineering Self-Modelling Systems: Application to Biology

  • Thank you for your attention

  • SMAC Team (Cooperative Multi-Agent Systems)

  • Institut de Recherche en Informatique de Toulouse

  • UPEtec

  • www.irit.fr/SMAC - www.upetec.fr



References

  • References related to SMAC team

    • [Besse 05] C. Besse, Recherche de conformation de molécules et apprentissage du potentiel de Lennard-Jones par systèmes multi-agents adaptatifs, Research Master IARCL Report, Université Paul Sabatier, June 2005.
    • [Camps 97] V. Camps, M.P. Gleizes, S. Trouilhet, Properties Analysis of a Learning Algorithm for Adaptive Systems, First International Conference on Computing Anticipatory Systems, Liège, Belgium, August 1997.
    • [Camps 98] V. Camps, Vers une théorie de l'auto-organisation dans les systèmes multi-agents basée sur la coopération : application à la recherche d'information dans un système d'information répartie, PhD thesis, Université Paul Sabatier N°2890, IRIT, Toulouse, January 1998.
    • [Capera 05] D. Capera, Systèmes multi-agents adaptatifs pour la résolution de problèmes : Application à la conception de mécanismes, PhD thesis, Université Paul Sabatier, IRIT, Toulouse III, 23 June 2005.
    • [Cornet 06] F. Cornet, Etude d'un problème d'allocation de fréquences par systèmes multi-agents adaptatifs, Research Master IARCL Report, Université Paul Sabatier, June 2006.
    • [Dotto 99] F. Dotto, L. Trave-Massuyes, P. Glize, Acheminement du trafic d'un réseau téléphonique commuté par une approche multi­agent adaptative, Congrès CCIA, Girona.
    • [Georgé 04] J.P. Georgé, Résolution de problèmes par émergence, Etude d'un Environnement de Programmation Emergente, PhD thesis, Université Paul Sabatier, IRIT, Toulouse III, 6 July 2004.
    • [Mano 06] J.P. Mano, Etude de l’émergence fonctionnelle au sein d’un réseau de neuro-agents coopératifs, PhD thesis, Université Paul Sabatier, IRIT, Toulouse III, 30 May 2006.


References (2)

  • References related to SMAC team (2)

    • [Ottens 07] K. Ottens, Un système multi-agent adaptatif pour la construction d'ontologies à partir de textes, PhD thesis, Université Paul Sabatier, IRIT, Toulouse III, 2 October 2007.
    • [Pesquet 99] B. Pesquet, M.P. Gleizes, P. Glize, Une équipe de robots footballeurs auto-organisée : les SMACkers, Intelligence artificielle située, cerveau, corps et environnement, A. Drogoul & J.A. Meyer coordonnateurs, Editions Hermès, 1999.
    • [Picard 04] G. Picard, Cooperative Agent Model Instantiation to Collective Robotics, In: 5th International Workshop on Engineering Societies in the Agents World (ESAW 2004), Toulouse, France, M.P. Gleizes, A. Omicini, F. Zambonelli (Eds), Springer Verlag, LNCS 3451, 209-221.
    • [Sontheimer 99] T. Sontheimer, Modèle adaptatif de prévision de crues par systèmes multi-agents auto-organisateurs, Institut Universitaire Professionnalisé Report, 1999, Diren.
    • [TFGSO 04] AgentLinkIII TFG “Self-organisation in Multi-Agent Systems” report.
    • [Topin 99] X. Topin, V. Fourcassie, M.P. Gleizes, G. Theraulaz, C. Régis, P. Glize, Theories and Experiments on Emergent Behaviour: From Natural to Artificial Systems and Back, In: European Conference on Cognitive Science, Siena, 1999.
    • [Welcomme 08] J.B. Welcomme, MASCODE : un système multi-agent adaptatif pour concevoir des produits complexes. Application à la conception préliminaire avion, PhD thesis, Université de Toulouse, 31 March 2008.


References (3)

  • References external to SMAC team (1)

    • [Amigoni 07] F. Amigoni, V. Schiaffonati, Multiagent-Based Simulation in Biology: A Critical Analysis, In: Model-Based Reasoning in Science, Technology, and Medicine, Springer, Studies in Computational Biology, 64, Lorenzo Magnani and Ping Li (Eds), 179-191, 2007.
    • [Armano 05] G. Armano, G. Mancosu, A. Orro, E. Vargiu, A Multi-agent System for Protein Secondary Structure Prediction, In: Transactions on Computational Systems Biology III, LNCS 3737, Springer, 14-32, 2005.
    • [Bortolussi 05] L. Bortolussi, A. Dovier, F. Fogolari, Multi-Agent Simulation of Protein Folding, In: First Workshop on Multi-Agent Systems for Medecine, Computational Biology, and Bioinformatics (MAS*BIOMED'05@AAMAS'05), 91-106, 2005.
    • [Bosse 06] T. Bosse, C. Jonker, J. Treur, Simulation and Analysis of Complex Biological Processes: an Organisation Modelling Perspective, In: 39th Annual Simulation Symposium, 2006.
    • [Camazine 01] S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz G., E. Bonabeau, Self-Organization in Biological Systems, Princeton University Press, 2001.
    • [Conceicao 08] D. Conceição, M. Gatti, C. de Lucena, An Agent-based Framework for Stem Cell Behavior Modeling and Simulation, Research report 17/08, Department of Computer Sciences, Pontificia Universidade Catolico do Rio de Janeiro, April 2008.
    • [D’Inverno 05] M. d’Inverno, R. Saunders, Agent-based Modelling of Stem Cell Organisation in a Niche, In: Engineering Self-Organising Systems: Methodologies and Applications, Springer, Brueckner S., Di Marzo Serugendo G., Karageorgos A., Nagpal R. (Eds), LNCS 3464, Springer, 52-68, 2005.
    • [Emonet 05] T. Emonet, C. Macal, M. North, C. Wickersham, P. Cluzel, AgentCell: a Digital Single-cell Assay for Bacterial Chemotaxis, Bioinformatics Advance Access, In: Bioinformatics, 21, 2714-2721, 2005.


References (4)

  • References external to SMAC team (2)

    • [Querrec 03] G. Querrec, V. Rodin, J.F. Abgrall, S. Kerdelo, J. Tisseau, Uses of Multiagent Systems for Simulation of MAPK Pathway, In: Third IEEE Symposium on Bioinformatics and Bioengineering (BIBE'03), 421-425, 2003.
    • [Gonzalez 03] P. González, M. Cárdenas, D. Camacho, A. Franyuti, O. Rosas, J. Lagúnez-Otero, Cellulat: an Agent-based Intracellular Signalling Model, In: Biosystems, 68(2-3), 171-185, 2003.
    • [Guo 07] D. Guo, E. Santos, A. Singhal, E. Santos, Q. Zhao, Adaptivity Modeling for Complex Adaptive Systems with Application to Biology, In: IEEE International Conference on Systems, Man and Cybernetics, 272-277, 2007.
    • [Jonker 08] C. Jonker, J. Snoep, J. Treur, H. Westerhoff, W. Wijngaards, BDI-modelling of Complex Intracellular Dynamics, In: Journal of Theoretical Biology, 251, 1-23, 2008.
    • [Khan 03] S. Khan, R. Makkena, W. Gillis, C. Schmidt, A Multi-agent System for the Quantitative Simulation of Biological Networks, In: Second International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS’03), Melbourne, ACM, 385-392, 2003.
    • [Lales 05] C. Lales, N. Parisey, J-P. Mazat, M. Beurton-Aimar, Simulation of Mitochondrial Metabolism using Multi-agents System, In: First Workshop on Multi-Agent Systems for Medecine, Computational Biology, and Bioinformatics (MAS*BIOMED'05 at AAMAS'05), 137-145, 2005.
    • [Lints 05] T. Lints, Multiagent Modelling of a Bacterial Cell, a DnaA Titration Model Based Agent Model as an Example, In: Ninth Symposium on Programming Languages and Software Tools, Tartu, Estonia, Vene V., Meriste M. (Eds.), 82-96, 2005.
    • [Luck 05] M. Luck, E. Merelli, TFG on Agents in Bioinformatics, In: Knowledge Engineering Review, 20(2), 117-125, 2005.
    • [Mendes 93] P. Mendes, GEPASI: A Software Package for Modelling the Dynamics, Steady States and Control of Biochemical and other Systems, In: Computer Applications in the Biosciences, 9(5), 563-571, 1993.


References (5)

  • References external to SMAC team (3)

    • [Merelli 06] E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d'Inverno, A. Doms, P. Lord, A. Martin, L. Milanesi, S. Moller, M. Schroeder, M. Luck, Agents in Bioinformatics, Computational and Systems Biology, In: Briefings in Bioinformatics, 8(1), 45-59, 2006.
    • [Troisi 05] A. Troisi, V. Wong, M. Ratner, An Agent-based Approach for Modeling Molecular Self-organization, In: Proceedings of the National Academy of Sciences of the USA (PNAS), 102(2), 255-260, 2005.
    • [Santos 04] E. Santos, D. Guo, E. Santos Jr., W. Onesty, A Multi-Agent System Environment for Modelling Cell and Tissue Biology, In: International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA, CSREA Press, Arabnia H. R. (Eds), 3-9, 2004.
    • [Shafaei 08] S. Shafaei, N. Aghaee, Biological Network Simulation Using Holonic Multiagent Systems, In: Tenth International Conference on Computer Modeling and Simulation (UKSIM'08), 1-3 April, 617-622, 2008.
    • [Webb 06] K. Webb, T. White, Cell Modeling with Reusable Agent-based Formalisms, In: Applied Intelligence, 24(2), 169-181, 2006.


Yüklə 445 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin