Güzel uygulamalar



Yüklə 228,61 Kb.
səhifə3/4
tarix03.11.2017
ölçüsü228,61 Kb.
#29303
1   2   3   4

René Descartes


René Descartes (Röne Dekart okunur) (31 Mart 1596-11 Şubat 1650) Fransız matematikçi, bilimadamı ve filozof.1596 yılında (şimdi Descartes), Touraine, Fransa’da doğan ünlü düşünür, eğitimini Anjou’da bulunan bir Cizvit kolejinde gördü. Sağlık bakımından zayıf olan Descartes, özellikle çocukluğunda sık sık hastalıklarla boğuştu. 1616 yılında Poitiers üniversitesinden hukuk diplomasını aldı. Gençlik yıllarında çeşitli dönemlerde orduda hizmette bulundu. Bu hizmetlerin dışında Avrupa’nın bir çok ülkesine yolculuklar yapıp, çeşitli şehirlerde yaşadıktan sonra 1628 yılında Fransa’ya geri döndü ve felsefe ve optik üzerine değişik deneyler yaptı. Aynı yıl Hollanda’ya yerleşti.
Hayatı boyunca sabahları geç kalkma alışkanlığı oldu. 1649 yılında, zamanın İsveç Kraliçesi Christina’nın davetiyle Stockholm’a yerleşti ve burada kraliçeye dersler vermeye başladı. Kraliçenin isteğiyle, filozofun uyanık olmaya alışık olmadığı kadar erken bir saat olan, sabah beşte yapılan dersler ve ülkenin soğuk iklimi yüzünden Descartes, İsveç’e gelişinin bir kaç ay ardından 11 Şubat 1650′de zatüreden dolayı yaşamını yitirdi.Descartes bilime ve matematiğe önemli katkılarda bulunmuştur. Optikte yansımanın temel kanununu bulmuştur; geliş açısı gidiş açısına eşittir. Matematiğe olan en büyük katkısı ise analitik geometri üzerine olmuştur. Cebirin geometriye uygulanması üzerine çalışmıştır. Kartezyen Geometri ifadesini ortaya atmıştır. Eğrileri onları üreten denklemlere göre sınıflandırmıştır. Alfabenin son harflerini bilinmeyen çokluklar için, ilk harflerini de bilinen çokluklar için kullanmıştır.Descartes’ın felsefe tarihindeki önemi, kilise odaklı orta çağ felsefesini içinde bulunduğu darboğazdan çıkarıp Yeni Çağ’a taşımasından kaynaklanmaktadır. Descartes’ın çalışmaları “Akılcılık” akımının doğmasına yol açmıştır.Başta Spinoza ve Leibniz olmak üzere eserleri pek çok önemli filozofu etkilemiştir.Filozofun görüşleri, başta “Düşünüyorum öyleyse varım” çıkarımı olmak üzere, günümüzde de halen pek çok eserde alıntı olarak bulunabilmektedir.Düşünceleri kendinden sonraki bütün filozofları etkilemiştir. 17 ve 18. yüzyıllarda Descartes’in etkisi kolayca görülebilir. Locke, Hume, Leibniz ve Kant; Descartes’in düşüncesine yanıt vermeye çalışmışlardır.Bu bakımdan modern felsefenin babası sayılmaktadır.Descartes, cebirin geometriye uygulanmasından oluşan yeni bir kod buldu. Bu kol, analitik geometri ya da koordinat geometrisi olarak çeşitli adlar altında bilinir. Descartes, aynı zamanda, diyagramı da buldu. Bir diyagram üzerinde yer alan herkesin bildiği o iki çizgi onun adını taşımaktadır. Bunlara Kartezyen koordinatlar denir; Kartezyen de, Descartes adından türetilmiş bir sıfattır. Matematiğin apaçık ve tümüyle güvenilir kesinlikleri Descartes’i heyecanlandırmaktaydı. Böylece, matematiğe kesinliğini veren şeyin, bilginin öteki alanlarına uygulanıp uygulanamayacağını düşünmeye başladı. Eğer bu mümkün olabilirse, hiçbir şeyin kesin olarak bilinemeyeceğini savunan şüphecileri kolayca çürütebilecek bir şey olacaktı elimizde. Fakat, bundan da önemlisi, modern anlamıyla bilimin üzerinde inşa edilebileceği dünya hakkında kesin bilgi elde etmenin bir yöntemine kavuşabilecektik.Descartes, matematiğin, kesinliğini şu bir dizi nedene borçlu olduğunu sonucuna vardı. Matematik tanıtlamalar, son derece basit az sayıda öncülden başlamaktaydı; bu basitlik, (iki nokta arasındaki en kısa mesafe düz bir çizgidir önermesinde olduğu gibi) o denli temel ve apaçıktı ki onlardan şüphe etmek olanaksızdı. Daha sonra, her seferinde mantıksal bir adım atılarak bu tanıtlamalardan tümdengelimsel biçimde ilerlenirdi. Her adım, yanlışlanamaz, çok basit ve yine kesindi. Daha sonra, –ki bu matematiğin büyüsüne kapılmış herkesi kendinden geçiren bir şeydir – her biri basit ve apaçık olan öncüllerden yine her biri basit ve apaçık olan mantıksal adımlarla ilerlerken, ne basit ne de apaçık olan sonuçlara vardığınızı fark edersiniz: Önünüzde öngörülmemiş buluşlarla dolu bir dünya açılmaya başlar. Bu buluşların çoğu şaşırtıcıdır ve uygulamada büyük yararları vardır; ayrıca hepsinin doğruluğuna güvenilebilir. İnsana, keşfedilmeyi bekleyen bu dünyanın bir sonu yokmuş gibi gelir. Descartes’in yaptığı gibi, matematikçiler beklenmedik yeni yollar açmışlar hep.Şimdi, bu yöntemi matematiksel olmayan bilgilere tastamam uygulamak mümkün müdür, diye sorar Descartes. Matematiğin dışında doğruluğundan şüphe edilemez önermeler bulabilirsek, onları, tümdengelimsel kanıtlamalarda öncül olarak kullanabiliriz; bu durumda, onlardan mantıksal olarak çıkarsadığımız herşey doğru olmak zorundadır. Bu bize, bilgi yolunda buluşlarına yüzde yüz güvenebileceğimiz yöntemsel bir temel sağlayacaktır. Fakat, böyle öncüller var mıdır? Yoksa, matematik ve mantık dışında, kesin olarak bilebileceğimiz bir şey yok mudur?
Bu tür kesin öncüller arayışında Descartes üç evreden geçti. İlkin, doğrudan ve dolaysız deneyi önüne koydu. Çıplak gözle kilise kulesine ya da bir bölümü suya batmış şu ağaca baktığımda, elbette duyularımın dolaysız tanıklığına güvenebilirim. Ama heyhat! Araştırma sırasında, doğrudan gözlemin bizi sık sık yanılttığı ortaya çıkmaktadır. Gündüz altın gibi parlayan, günbatımında kızıllaşan şu kilise kulesi, diğer zamanlarda gri görünmektedir. Suya girdiği noktada eğik görünen şu dalın, sudan çıkartıldığında düz olduğu görülüyor. Dolayısıyla, onlara ne kadar doğrudan baksam da, aklım ne kadar uyanık ve tetikte olsa da, gerçekte şeylerin bize göründüğü gibi olduklarından asla emin olamayız.

Zihin ve Beden


Descartes ‘zihin’ (fransızca esprit, Latince mens) ya da ‘ruh’ (Fransızca ame, Latince anima) terimini bilinçli, düşünen ben’e işaret etmek için kullanır.Yöntem Üzerine Konuşma belirttiği gibi (AT VI 330: CSM I 127) “sayesinde benim ben olduğum bu ‘Ben’ “. Daha sonra, Meditasyonlarda bu kavrayışı daha tam hale getirir: İkinci Meditasyon’da ‘Öyleyse ben neyim?’ diye sorar ve yanıt verir: “Ben kati anlamıyla yalnızca düşünen bir şeyim (res cognitans), yani ben bir ‘zihin veya zekâ veya akıl veya ratioyum* (mens, sive animus, sive intellectus, sive ratio, AT VII 27: CSM II 18). Daha sonra, ‘düşüncenin’ tanımı iradi ve akli faaliyetleri içerecek şekilde genişletilir: “Öyleyse ben neyim? Düşünen bir şey Bu (şey) nedir? Kuşku duyan, idrak eden, evetleyen, redde den, isteyen ve istemeyen bir şey …” (AT VII 28: CSM II 19 bu pasajda, imgeleme ve duyusal algıya sahip olma ‘düşünen bir şeyin’ yaptıklarının listesine eklenir, ancak bu son iki yeti daha sonra, Altıncı Meditasyon da kendilerine ait özel bir kategoride incelenmeyi (ele alınmayı) gerektirir hale gelir; Descartes’ın “düşünce” genel yaftası altında sınıflandırdığı akli ve iradi faaliyetler hakkında Meditasyonlar ın sonunda ortaya çıkacak merkezi olgu bunların cisimden tamamıyla ayrı bir töze ait olduklarıdır. “Bir yandan, yalnızca düşünen, uzama sahip olmayan bir şey olduğum denli, kendimin açık ve seçik bir ideasına sahibim; ve diğer yandan yalnızca uzama sahip, düşünmeyen bir şey olduğu denli, açık ve seçik bir cisim ideasına sahibim” (Altıncı Meditasyon, AT VII 78: CSM Ii 54;

SELMAN AKBULUT

Prof. Dr. Selman Akbulut, 1971 yılında California Üniversitesi (Berkeley) Matematik Bölümü'nden mezun olmuştur. Prof. Dr. Akbulut, 1975 yılında aynı üniversitede doktora eğitimini tamamlayarak, 1976 yılında Wisconsin Üniversitesi'nde yardımcı doçent olarak göreve başlamıştır.
1978 - 1980 yılları arasında Rutgens Üniversitesi'nde, 1980 - 1981 yıllarında Michigan State Üniversitesi'nde Yardımcı Doçent; 1983 - 1986 yılları arasında aynı üniversitede Doçent olarak çalışmalarda bulunan Prof. Dr. Akbulut 1986 yılında profesörlüğe yükselmiştir ve halen Michigan State Üniversitesi'nde görev yapmaktadır.
Prof. Dr. Akbulut, 1975 - 1976, 1980 - 1981 yıllarında Advanced Study Institute'da, 1982 - 1983 yıllarında Max - Planck Enstitüsü ve 1984 - 1985 yıllarında California Üniversitesi, Mathematical Sciences Research Institute'de çalışmalarda bulunmuştur.
Prof. Dr. Akbulut, Türk Matematik Derneği, Amerikan Matematik Derneği ve Doğa - Türk Matematik Dergisi Editörler Kurulu'na üyedir.
Prof. Dr. Selman Akbulut'un Uluslararası Science Citation Index'ce taranan hakemli dergilerde çıkmış 29 yayını vardır ve bu yayınlara 1991 yılı sonu itibariyle 239 atıf yapılmıştır.

MOLLA LÜTFİ (? - 1495)

15. yüzyılda, Fatih Sultan Mehmet ve II. Beyazıd dönemlerinde yaşamış meşhur matematikçilerdendir. Sinan Paşa’nın ve Ali Kuşçu’nun talebesi olmuş, Ali Kuşçu’dan öğrendiği matematik bilgilerini Sinan Paşa’ya aktarmıştır. Böylece Sinan Paşa, onun vasıtasıyla matematik öğrenmiştir. Sinan Paşa’nın tavsiyesiyle, Fatih, Molla Lütfi’yi, özel kütüphanesinin müdürlüğüne getirmiştir. Molla Lütfi, bu sayede pek çok değerli kitaptan değişik bilimleri öğrenme fırsatına sahip olmuştur. Sinan Paşa, Fatih tarafından Sivrihisar’a sürülünce, Molla Lütfi de hocası ile birlikte gitmiş, Sultan II. Beyazıd’ın tahta çıkmasının ardından hocasıyla birlikte İstanbul’a dönmüştür. Önce Bursa’daki Yıldırım Beyazıd Medresesi’nde, sonra Filibe’de ve Edirne’de medrese hocalığı yapmıştır.Molla Lütfi, çevresindeki devlet erkanına ve bilginlere latife yaparak onları eleştirdiğinden, çoğu kimse tarafından sevilmezdi. Fatih Sultan Mehmet’le bile iki arkadaş gibi şakalaşırdı. Kendisini çekemeyen bazı kimselerin, dinsizlik suçlamaları nedeniyle kovuşturmaya uğradı ve Sultan Beyazıd döneminde idam edildi. Ölümü üzerine pek çok kimse yas tutmuş, tarihler düşmüş ve şehit sayılmıştı.Molla Lütfi’nin, çoğu Arapça olan eserleri 17. yüzyıla kadar elden düşmemiştir. Taz’ifü’l-Mezbah (Sunak Taşının İki Katının Bulunması Hakkında) adlı kitabı iki bölümden oluşur. Birinci bölümde kare ve küp tarifleri, çizgilerin ve yüzeylerin çarpımı ve iki kat yapılması gibi geometri konuları ele alınmıştır. İkinci bölümde ise meşhur Delos problemi incelenmiştir. Molla Lütfi’nin, bu problemi, İzmir’li Theon’un eserinden öğrendiği anlaşılmaktadır. İzmir’li Theon, İskenderiye kütüphanesinin müdürü Eratosthenes’e atıfla, Delos adasında büyük bir veba salgını çıkınca, ahalinin, Apollon rahibine müracaat ederek bu salgının geçmesi için ne yapmak gerektiğini sorduklarında, rahibin tapınaktaki sunak taşını iki katına çıkarmalarını tavsiye ettiğini, böylece kolaylıkla çözülemeyecek bir matematik problemi ortaya çıkmış olduğunu yazar. Mimarlar bu işi başaramıyınca, Platon’un yardımını isterler. Platon, rahibin sunak taşına ihtiyacı olduğundan değil, Yunanlılara matematiği ihmal ettiklerini ve küçümsediklerini söyleme maksadında olduğunu bildirdikten sonra, problemlerin orta orantı ile çözüleceğini ifade etmiştir. Molla Lütfi, işte bu hikayeye dayanarak eserini yazmıştır. Kitabında, küpün iki kat yapılmasının, yanına başka bir küp ilave etmek demek olmayıp, onu sekiz defa büyütmek demek olduğunu açıklar. Molla Lütfi Mevzuatü’l Ulüm (Bilimlerin Konuları) adlı eserinde de yüz kadar bilimi tasnif etmiştir.

ULUĞ BEY (1393 - 1449)

Türk matematikçilerinden birisi olan Uluğ Bey, Timur’un erkek torunlarından hükümdar olanlardan birinin oğludur. Asıl adı Mehmet’tir. Fakat o, daha çok Uluğ Bey adı ile ünlü olmuştur. 1393 yılında Sultaniye kentinde doğmuştur. Timur’un öldüğü sıralarda Uluğ Bey Semerkant’ta bulunuyordu. Semerkant ve Maveraünnehir, Mirza Halil Sultan’ın saldırısı ve işgali üzerine babasının yanına gitmek zorunda kalmıştır. Babası buraları yeniden yönetimine alarak on altı yaşında olan Uluğ Bey’e yönetimini bırakmıştır. Uluğ Bey, bu tarihten sonra, hem hükümeti yönetmiş ve hem de öğrenimine devam etmiştir.Uluğ Bey, bilgin ve olgun bir padişahtı. Boş zamanını kitap okumak ve bilginlerle ilmi konular üzerinde konuşmakla geçirirdi. Tüm bilginleri yöresinde toplamıştı. Uluğ Bey, dikkatlice okuduğu kitabı kelimesi kelimesine hatırında tutacak kadar belleği vardı. Matematik ve astronomi bilgileri oldukça ileri düzeydeydi. Bir söylentiye göre, kendi falına bakarak, oğlu Abdüllatif tarafından öldürüleceğini görmüş ve bunun üzerine oğlunu kendisinden uzak tutmayı uygun görmüştür. Baba ile oğlu arasındaki bu soğukluk, Uluğ Bey’in küçük oğluna karşı olan yakınlığı ile daha da şiddetlenmiş ve sonunda Uluğ Bey’in korktuğu başına gelmiştir.Uluğ Bey, Semerkant’ta bir medrese ve bir de rasathane yaptırmıştır. Kadı Zade bu medreseye başkanlık etmiştir. Rasathane için yörede bulunan tüm mühendis, alim ve ustaları Semerkant’a çağırmıştır. Kendisi için de bu rasathanede bir oda yaptırarak tüm duvar ve tavanları gök cisimlerinin manzaralarıyla ve resimleriyle süsletmişti. Rasathanenin yapım ve rasat aletleri için hiç bir harcamadan kaçınmamıştır. Bu gözlemevinde yapılan gözlemler, ancak on iki yılda bitirilebilmiştir.Gözlemevinin yönetimini Kadı Zade ile Cemşid‘e vermiştir. Cemşid, gözlemlere başlandığı sırada ve Kadı Zade de gözlemler bitmeden ölmüştür. Gözlemevinin tüm işleri o zaman genç olan Ali Kuşçu‘ya kalmıştır. Bu gözlem üzerine Uluğ Bey, ünlü Zeycini düzenlemiş ve bitirmiştir. Zeyç Kürkani veya Zeyç Cedit Sultani adı verilen bu eser, birkaç yüzyıl doğuda ve batıda faydalanılacak bir eser olmuştur. Zeyç Kürkani bazı kimseler tarafından açıklanmış ve Zeyç’in iki makalesi 1650 yılında Londra’da ilk olarak basılmıştır. Avrupa dillerinin birçoğuna, çevrilmiştir. 1839 yılında cetvelleri Fransızca tercümeleriyle birlikte, asıl eser de 1846 yılında aynen basılmıştır.Zeyç Kürkani’nin asıl kopyalarından biri Irak ve İran savaşlarından sonra Türkiye’ye getirilmiş ve halen Ayasofya kütüphanesindedir. Bir hile ile oğlu Abdüllatif tarafından 1449 yılında öldürülmüştür.

Thales (M.Ö.624 - M.Ö.547) 



Antik dönemin ünlü filozofudur. Ataları Fenikelilerdir. Son
kaynaklar, M.Ö. 625 yılında Milletos'ta doğup, 545'te öldüğünü kabul eder.
Yaşadığı yıllarda; geniş bir araştırma, inceleme, düşünme ve mühendislik yeteneği ile ilginç bir ticari zekası sonucu üne kavuşmuştur. Miletos Okulu' nun korucusudur.
THALES zamanımıza kadar intikal eden yazılı bir eser bırakmamıştır. Düşünceleri öğrencileri yoluyla zamanımıza kadar intikal etmiştir.
THALES, ARİSTO' nun (M.Ö. 384,322) eserlerine atfen, fizik ve doğal felsefenin, EUDEME' nin (Aristo'nun öğrencisi), eserlerine atfen de astronomi ve matematiğin kurucusu kabul
edilir. Bu tür görüşler, konu ile ilgili yayınlarda her geçen yıl hızla yaygınlaşmıştır. Netice itibariyle de THALES' e mümtaziyet ve ebedilik vasıfları verilmiştir.
THALES' in astronomide kurucu addedilmesine ve üne kavuşmasına sebep olan olaylardan birisi şudur.
Atina'da M.Ö. 28 Mayıs 585 tarihinde görülebilecek Güneş tutulma olayını, tutulmanın vukuundan önce haber vermiş olmasıdır. Thales' e büyük ün kazandıran bu olay
Babilleler tarafından bilinmekte idi.
Burada önemli olan, tutulma olayının kendisi değil, haber verenin bu bilgiyi aldığı kaynaktır. Gerçekte: THALES' in bu bilgiyi eski Mısır ve Mezopotamya' dan elde ettiğinde bütün
kaynaklar birleşmektedir.
Matematikte kurucu addedilmesine sebep olan bilgileri de şunlardı.
Bir dairenin içine üçgen çizme probleminin çözümü. cisimlerin (piramitlerin) gölgesi yardımıyla yüksekliğinin hesabını. üçgenlerin kenarları ile ilgili bağıntılar ters açıların eşitliği konusu, küresel üçgenlerin bazı özellikleri eşkenar üçgenlerin taban açılarının eşitliği teoremi...
Fizikte kurucu addedilmesine sebep olan bilgileri de şunlardır.
Bazı cisimlerin demir üzerindeki çekim etkisi, Nil Nehri'nin taşmasının nedenlerinin açıklanması.
THALES'e atfedilen ve bilimlerde kurucu unvanını almasına sebep olan bu bilgiler, THALES'ten 2000 yıl kadar önceleri Eski Mısırlılar ve Mezopotamyalılar tarafından bilinmekte idi. THALES, eski Mısır ve Babil'e yaptığı birçok seyahatleri sırasında, buralarda eski dönemlerin bilim ve tekniklerini dönemin bilginlerinden (kahin, katip, rahip) öğrenmiştir. Bu ilk medeniyetlerin, eski imparatorluk dönemlerinden öğrenmiş ve bu suretle Grek felsefesinin, geometri ve astronomisinin gelişmesine ilk çıkış noktası olarak temel kavramlar edinmiştir.
Ülkemizde, diğer antik dönem bilginlerine olduğu gibi THALES' e mümtaziyet ve ebedilik verilmesine sebep, Batı' lı kaynakların yayınlarıdır. Değişik bir ifade ile bilgilerimizin noksan olduğu dönemlerin damgasını taşır.
Bize göre: THALES'in bilim tarihindeki yeri ile ilgili gerçekleri şu şekilde özetlemek mümkündür.
THALES, ilk medeniyetlerin beşiği olan eski Mısır bölgesini uzun yıllar dolaşmıştır. Kaynaklardan bazıları. THALES'in Babil bölgesine kadar gittiğini yazar. THALES eski Mısır ve Mezopotamya' ya yaptığı bu geziler sırasında matematik, astronomi ve fiziğin temel bilgilerini öğrenerek Atina' ya döndü. Burada, elde ettiği bilgileri önce sistematize, bilahare de kanuniyet (teori) halinde ifade etmiştir.
Bugün için "saçma" olan şu görüşler de THALES'e aittir: "Yeryüzü, suyun üstündedir ve suyun üstünde tahta parçası gİbi durur, dalgalanır.", "Kehribar da cisimleri çektiği için ruha sahiptir."
THALES' in doğa felsefesi ile ilgili görüşlerini, ayrı bir İhtisas dalı olması sonucu burada konu etmiyoruz Ancak şunu belirtelim. THALES, alemin yaratılışı ile ilgili bilgileri ortaya koyan Antik dönemin ilk bilginlerindendir.

Miletos Okulu'nun Kurucu ve Öğretim Üyeleri

Miletos Okulu'nun Kurucu ve Öğretim Üyelerinin önemli özeIIiği, İyonya' nın önde gelen bilim, kültür ve sanat merkezi olmasıdır. Aynı zamanda "Miletos Okulu" adlı bir bilim kuruluşuna sahip olmasıdır. 
Miletos Okulu' nun kurucusu THALES' tİr. Bu okulda THALES'in öğrencileri olarak, ANAXIMANDROS (M.ö. 610-543) ve ANAXİMENES (M.Ö. 546 hayatta) yetişmiştir. Kaynaklar, FİSAGOR 'un da (M.Ö. Sisam 570 -Metapante 500?) bu okulda yetiştiği ve Thales'in öğrencisi olduğunu belirtir.
Miletos okulu kurucu ve öğrencilerinin en önemli özelliği, keskin bir araştırma, gözlem ve derleme gücüne sahip olmalarıdır. Duyup gördükleri olayların açıklanmasını ve yorumlanmasını en iyi şekilde ifade etmişlerdir.

AHMET FERGANi

9. yüzyılın başlarında dünyaya geldiği kabul edilen ünlü matematik ve astronomi bilgini Ahmet Ferganî, çağının bilim ve kültür merkezlerinden olan Türkistan’ın Fergana bölgesindendir. Bilim ve kültür tarihimizin birinci elden kaynakları olan tezkireler (biyografik eserler)de doğum tarihi ile ilgili bir bilgi bulunmamakla birlikte kendisi gibi bir astronom olan babasının adının Muhammed, dedesinin ise Kesir olduğu kayıtlıdır.

Ahmet Ferganî, ilk öğrenimini ünlü bilginlerin yetiştiği Fergana’da yaptı ve büyük bir ihtimalle astronomi konusundaki bilgilerini babasından aldı. Belli bir seviyeye geldikten sonra da mevcut bilgilerine yeni bilgiler katmak amacıyla da, çağının bilim, kültür ve aynı zamanda halifelik merkezi olan Bağdat’a geldi. Ömrünün yarısına yakınını burada geçiren Ferganî, kısa sürede matematik ve astronomi konularındaki bilgisini Bağdat bilim çevresine kabul ettirip, bilimin gelişmesine olan katkılarıyla bilim tarihinde adlarından övgüyle bahsedilen Abbasi halifelerinden Me’mun ve el-mütevekkil döneminin en ünlü bilginleri arasına girdi.

861 yılında halife el-Mütevekkil tarafından Nil ırmağı kıyısında yapılan ölçüm işlerini yürütmesi için Mısır’a gönderilen Ferganî’nin, bundan sonraki yaşamı ve her ne kadar Prof. Dr. W. Barthold’un "İslam Medeniyeti Tarihi" adlı eserinde 861 tarihini gösteriyor ise de, ölüm tarihini bilmiyoruz.

BLAISE PASCAL

Fransız matematikçi, fizikçi ve yazar (1623 - 1662). Daha 16 yaşındayken konikler üzerine bir inceleme yazdı. 1642'de bir hesap makinası icat etti. Matematikle uğraşan babasıyla birlikte Paris Mersenne Akademisi'ne kabul edildi.Pascala göre rastlantı geometriye dökülebilir. O'nun olasılıklar hesabına yaklaşımı, Pascal üçgeni denen aritmetik üçgene dayanır. Pascal daha sonra sikloit üzerine incelemelere baş-ladı ve "Traité des sinus du quart du cercle" ( Çeyrek çemberin sinüleri üzerine inceleme) adlı yapıtında Leibniz 'in de yararlanacağı karakteristik üçgeni buldu... 1653'ten itibaren matematik ve fizik üzerine çalışarak sıvıların kararsızlığı üzerine bir kitapçık yazar. Bu kitapçıkta Pascal'ın basınç kanunu açıklanır. Kendisi binom üçgeni üzerinde çalışan ilk matematikçi olmasa da bu konuda çalışması değişik gelişmelere ışık tutmuştur... 

GAUSS


Alman astronomu, matematikçisi ve fizikçisidir. Daha çocukluğunda, erken gelişmiş zekası, matematiğe karşı zekasıyla sivrildi ve Brounseweig dükünün ilgisini çekti. Dük, okul masraflarını üzerine alarak O' nu Göttingen Üniversitesine gönderdi. Henüz 16 yaşındayken Herschel'in 1781 de keşfettiği Uranüs gezegeninin yörünge elemanlarını hesaplayarak, Yer'in bir noktasından yapılan ölçülerle, bu gezegenin yörünge elemanlarını bulmaya yarayan ve günümüzde hala kullanılan bir metot ortaya koydu. 1798 de Helmesdt'e yaptığı bir inceleme gezisinden sonra, Braunschweig'a döndü ve birkaç yıl içinde kendisini büyük matematikçiler sırasına koyacak bir seri çalışma raporu yayımladı.Sayılar üzerine incelemeleri topladığı Disqvisitiones Arithmetice'de (Aritmetik Araştırmalara) (1805), eşitlikleri, ikinci dereceden şekilleri, serilerin yakınsaklığını v.b. ele aldı. Piazzi tarafından 1810 da, küçük gezen Cerez'in keşfinden sonra Gauss, çeşitli gökmekaniği araştırmaları yaptı, hayatının sonuna kadar bağlı kalacağı Göttingen rasathanesine müdür oldu (1807) .Theoria Motus Corporum Coelestium İn Sectionibus Conicis Solem Ambientium (Konik kesitIi ? gökcisimlerinin güneş çevresindeki hareket kuramı) (1808) adlı ünlü eserini yazd1. Legendre ile hemen aynı zamanda düşündüğü ve daha önce 1797 de yararlandığı ?- en küçük kareler metodundan (1821) başka, yanılmalar teorisi ve iki terimli denklemlerin çözümü için genel bir metot buldu; uygun-tasvir üzerine araştırmalar, yüzeylerin eğriliği ve Disqvisitiones Generales Carca Sperficien Curvas'ta (eğri yüzeyler üzerine genel araştırmalar) (1827) , ispat ettiği ünlü teoremi de yazmak gerekir. Bu teoreme göre, bükülebilen fakat uzatılamayan bir yüzeyin eğriliği, yani eğriliklerinin çarpımı değişmez.Göttingen ile Altona arasındaki meridyen yayının ölçülmesi sırasında (1821,1824), Gussu, geodezi çalışmalarında ışıklı işaretler verebilmek için, kendi adını taşıyan Helyotropu tasarladı. Optik alanında, eksene yakın ışık ışınları için düzenlenmiş merkezi optik sistemlerinin genel teorisini kurdu. Elektrikle özelIikle magnetizma ile ilgilendi, bu alanda magnetometreyi icat etti. Ve Resultate Aus Den Beabochtungen Des Manetischen Vereins (Yer magnetizmasının genel kuramı) (1839), adlı eserinde, magnetizmanın, matematik teorisini formülleştirdi. Suclides'ci olmayan hiperbolik geometrinin keşfinde, bu konuda hiç bir şey yayımlamamış olmakla birlikte, Gauss, Balyai ve Labocewsky'den önce çalışmalar yapmış ve başarı sağlamıştı.

SALİH ZEKİ (1864 - 1921)

XIX. yüzyılın ikinci yarısında yetişmiş, değerli eserler vererek, 57 yaşında hayata gözlerini kapamış, bir ilim ve fikir adamıdır. Salih Zeki Bey, 1864 yılında İstanbul’da doğmuştur. Ortaöğrenimini Darüşşafaka’da görmüş, yüksek öğrenimini Paris’te elektirk mühendisliği bölümünü bitirmiştir.

Salih Zeki, Darüşşafaka ve Mühendis Mektebi’nde matematik ve fizik dersleri okutmuştur. Daha sonraki çalışmalarının tümünü üniversiteye vermiştir. Bugünkü gerçek üniversitenin kurucusu salih Zeki’dir. Türkiye’ye, matematik, fizik ve fen derslerini batılı yöntemleriyle ilk getiren odur. Birçok gazete ve dergide çıkan güzel yazılarıyla Türk gençliğini edebiyat kadar matematiğe yönelten ve matematiği sevdiren yine o olmuştur.

Salih Zeki, aydın fenciler silsilesinin en dikkate değer son halkasıdır. İlk ve ortaöğrenimin ihtiyacı olan matematik, geometri, cebir, astronomi, trigonometri ve fizik kitaplarından başka binlerce sahifeyi bulan, yüksek seviyedeki Darülfünun ders kitapları yazmış; felsefi konularda telif-tercüme eserler bırakmış, bilim tarihi ile ilgili incelemeler yayınlamış, bizzat Mizan-ı Tefekkür adlı bir matematik kitabı yazmış, anıt bir eser olarak Kamus-ı Riyaziyat’ı hazırlayarak bunun ilk cildini yayınlamıştır. 

Ernst Zermelo (1891 - 1953) 

Bir Alman matematikçisi olan Ernst Zermelo, 1891 yılında Berlin’de doğdu. Özellikle, kümeler kuramının geliştirilmesinde çok katkılarda bulundu. 1904 yılında Zermelo aksiyomunu veya seçme aksiyomunu ortaya attı. Bu aksiyoma göre, verilen bir kümenin her alt kümesinde, tek ve belirli bir şekilde üstünlüğü bulunan bir öğe seçmek olanağı vardır. Her küme iyi sıralanabilir. Ancak bazı matematikçiler bunu kabul etmiş, bazıları da karşı çıkmıştır. Bu konudaki tartışmalar, matematiğin modern evriminde önemli yer tutar. İyi sıralama, yirminci yüzyılın başında oldukça ateşli tartışmalara konu olmuş ve bugün herkes tarafından kabul edilmiştir. Zermelo, 1953 yılında Freinburrg’da ölmüştür.

Colin Maclaurin (1698 - 1746)

İskoçya’lı bir matematikçi olan Colin Maclaurin, 1698 yılında Kilmodan’da doğdu. 1717 yılında Aberdeen’deki Marischal Kolejinde matematik dersleri verdi. Maclaurin, Newton’un en başarılı öğrencilerinden biriydi. Geometri, cebir ve sonsuz küçükler hesabıyla ilgili eserler verdi. 1719 yılında “Organik Geometri” adlı eseri yayınlandı. Bu eserde, konikler, üçüncü ve dördüncü dereceden eğriler incelendi. Eğriler ve maksimumları üzerine buluşlar yaptı. 1742 yılında yayınladığı kitapta, kendi adıyla anılan, formülü ve bazı fizik buluşları vardır. Maclaurin’i yaşatan ve çok kullanılan Maclaurin açılımı veya serisidir. 1746 yılında Edinburgh’ta öldü

TARİHDEKİ KEŞİF VE BULUŞLAR

MİLATTAN ÖNCE


Yüklə 228,61 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin