“xususiy vaqt” deb atash mumkin. Bunday
deb atashning m a’nosini ochish uchun birorta inersial (
К ) sanoq sis-
tem asida turib ixtiyoriy harakatlanayotgan soatni kuzatam iz.
Soat
bilan bog'langan sanoq sistem a
( K 1) umuman olganda inersial emas,
lekin yuqoridagi m a’noda har bir oniy vaqt m om entida uni inersial
deb qarash mumkin. H arakatdagi soatning
dt' farq bilan ketma-ket
ikkita ko‘rsatishi ikkita voqea bo‘lsin. Bu voqealar
K ' sanoq sistem ada
bir nuqtada sodir bo‘ladi va ular orasidagi interval vaqtsimon bo‘lib,
quyidagiga teng bo'ladi:
dS = с
dt'. (1-14)
Bundan
К sistem ada tinch turgan soat bo'yicha bu ikki voqea orasidagi
vaqt
dt ga teng. H arakatdagi soat
dt vaqt ichida tinch turgan ku-
zatuvchiga nisbatan
у/ dx 2 +
dy 2 +
d z 2 masofaga ko'chadi. Bularga
asosan intervalni
К sanoq sistemasida yozamiz:
dS = \Jс 2 dt 2 — dx 2 —
d y 2 —
d z 2.
(1-16)
Endi (1.14) - (1.16) ifodalardan foydalanib,
К va
K ' sistem alardagi
soatlarning ko‘rsatishlarini bog‘lovchi tenglam ani hosil qilamiz:
dx 2 +
dy 2 + d z 2 I v 2