Mavzu: Algebralar gomomorfizmi. Mundarija kirish


Teskarisi ga bо‘linsin. U holda . U holda



Yüklə 74,73 Kb.
səhifə16/28
tarix13.12.2023
ölçüsü74,73 Kb.
#140093
1   ...   12   13   14   15   16   17   18   19   ...   28
Mavzu Algebralar gomomorfizmi. Mundarija kirish-fayllar.org (1)

Teskarisi ga bо‘linsin. U holda . U holda .
Misol 7. Agar gruppa elementi tartibga ega bо‘lsa, u holda tartibga ega. Bunda ekanini isbotlang.

Abel Nilpotent gruppalar.

gruppada A va V gruppalar olingan. Shu gruppalarning о‘zaro kommutativ deb quyidagi tipdagi elementlardan hosil qilingan -gruppalar idealiga aytiladi. Bu elementlar a va v elementlar kommutatori deyiladi va (2)
Bunda dan olingan -ar amal.
multioperatorsiz gruppalar bо‘lsa, gruppaostilari о‘zaro kommutant lar mumkin bо‘lgan. kommutator bilan gruppada hosil qilingan normal bо‘luvchilar bо‘lishadi. Bunda a€A, v€V. Agar halqani qarasak, hamma vaqt nolga teng. (2) element esa Bu holatda halqaostilari о‘zaro kommutant ideal bо‘ladi. Bu ideal halqa ostida mumkin bо‘lgan barcha av va va kо‘paytmalar bilan hosil qilinadi. Bunda . Ideal ta’rifidan kelib chiqadiki, agar gruppadan olingan qismgruppa idealda saqlanadi va bu ideal dagi markali hosil qilinadi. Bu yerdan esa, agar gruppadan qism gruppalar. berilgan bо‘lsa, u holda

Multioperatorsiz gruppalarda о‘zaro kommutant komutatorlar bilan hosil qilingan qism gruppalar bilan ustma-ust tushadi. Bunda .
gruppani A va V qism gruppalar uchun (3)tenglik о‘rinli. Haqiqatdan ixtiyoriy v a uchun

Chunki qо‘shish bо‘yicha - ning onrmal bо‘luvchisi bо‘ladi. Boshqa tomondan ixtiyoriy -ar amal uchun va ixtiyoriy lar uchun shunga kо‘ra (4)dan

Navbatda

(4)ga kо‘ra esa
va ning ideali bо‘ladi.

Bu yerda natijada
ni hosil qilamiz. (4) va (5) dan.
kelib chiqadi. Ta’rifdan kо‘rinadiki о‘zaro komutant (ixtiyoriy gruppa bilan) G da ideal bо‘ladi. Bu esa, hususan uchun ham. Bu ideal gruppa kommutant bо‘ladi. gruppaning gruppaning -qism gruppa
(6) faqat shu shartdagina da ideal bо‘ladi. Haqiqatda, agar A-ideal da bо‘lsa, u holda barcha da saqlanadi.

Yüklə 74,73 Kb.

Dostları ilə paylaş:
1   ...   12   13   14   15   16   17   18   19   ...   28




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin