O‘zbekiston milliy universiteti m. ShAripov d. Fayzixo‘jayeva mantiq tarixi va nazariyasi falsafa yo‘nalishi talabalari uchun Darslik Toshkent


Necessary and sufficient conditions



Yüklə 1,13 Mb.
səhifə169/180
tarix25.11.2023
ölçüsü1,13 Mb.
#134832
1   ...   165   166   167   168   169   170   171   172   ...   180
O‘zbekiston milliy universiteti m. ShAripov d. Fayzixo‘jayeva ma-fayllar.org

Necessary and sufficient conditions: A necessary condition for a statement S is a condition that must hold in order for S to obtain. S → P says that P is a necessary condition for S. A sufficient condition for a statement S is a condition that guarantees that S will obtain. P → S says that P is a sufficient condition for S.

Proof by contradiction (indirect proof): To prove  S by contradiction, we assume S and prove a contradiction. In other words, we assume the negation of what we wish to prove and show that this assumption leads to a contradiction. (See Negation Introduction.)

Reflexive: a binary relation R is reflexive iff everything stands in the relation R to itself, i.e., R satisfies the condition that ∀ x R(x, x).

Tautology: A sentence that is logically true in virtue of its truth-functional structure. This can be checked using truth tables since S is a tautology if and only if every row of the truth table for S assigns true to the main connective.

Truth table: Truth tables show the way in which the truth value of a sentence built up using truth-functional connectives depends on the truth values of the sentence’s components.

Universal quantifier (∀ ): In FOL, the universal quantifier is expressed by the symbol ∀ and is used to express universal claims. It corresponds, roughly, to English expressions such as everything, all things, each thing, etc.

Glossariy (o‘zbek tilida)

Antetsedent – shartli mulohaza antetsedenti if gapining birinchi tarkibiy qismidir. P → Q da R- antetsedent, Q- natijadan iborat.
Argument – ushbu soʻz mantiqda ikki ma’noda qo‘llaniladi:
1. Argumentlar muhokamaning qismi sifatida - bunda argument muhokamadagi muayyan mulohazalar izchilligidan iborat bo‘lib, ulardan biri (xulosa) boshqasidan kelib chiqishi yoki u bilan qo‘llab-quvvatlanishi kerak (asoslar).
2. Matematik ma’nodagi argumentlar – bu - atomli (boshlang‘ich o‘zak) wff mulolohazasida predikat sifatida olingan individual simvol (o‘zgaruvchi qiymat yoki doimiy-konstanta). Atomli (boshlang‘ich o‘zak) wff LeftOf (x, a), x va a – binar predikat LeftOf argumentlari.


Yüklə 1,13 Mb.

Dostları ilə paylaş:
1   ...   165   166   167   168   169   170   171   172   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin