Tez özetleri Astronomi ve Uzay Bilimleri Anabilim Dalı


Arithmetic Properties of Some Power Series and Fundamental Units of Certain



Yüklə 0,84 Mb.
səhifə31/119
tarix03.01.2022
ölçüsü0,84 Mb.
#49487
1   ...   27   28   29   30   31   32   33   34   ...   119
Arithmetic Properties of Some Power Series and Fundamental Units of Certain

Real Quadratic Number Fields
In this study, arithmetic properties of some power series and fundamental units of certain real quadratic fields are investigated. This thesis consists of five chapters.
In the first chapter, a general investigation about the Theory of Transcendental Numbers and the Fundamental Units of Real Quadratic Number Fields is presented.
In the second chapter, main definitions and theorems about Liouville Numbers, Number Fields, Fundamental Units and Continued Fractions are given.
In the third chapter, the methods which we used in order to prove our original teorems are summarized.
In the fourth chapter, firstly it is shown that under certain conditions the values of some power series with rational coefficients for some Liouville number arguments belong to either the field of rational numbers or the set of Liouville numbers. Then, for all real quadratic fields except for Richaud-Degert type such that the period in the continued fraction expansion of the quadratic irrational number is equal to 7, , coefficients of the fundamental unit and the continued fraction expansion of the quadratic irrational number are determined explicitly and the original theorems are obtained.
An evaluation of the results of this study is carried out in the fifth chapter.

OSANÇLIOL Alen

Tez Adı : Ağırlıklı Orlicz Uzaylarının Soyut Harmonik Analizi

Danışman : Prof. Dr. Serap ÖZTOP

Anabilim Dalı : Matematik

Programı : -

Mezuniyet Yılı : 2013

Tez Savunma Jürisi : Prof. Dr. Serap ÖZTOP

Prof. Dr. Nazım SADIK

Prof. Dr. Aydın AYTUNA

Prof. Dr. Yusuf AVCI



Doç. Dr. Erhan ÇALIŞKAN


Yüklə 0,84 Mb.

Dostları ilə paylaş:
1   ...   27   28   29   30   31   32   33   34   ...   119




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin