Analitik geometriyadan misol va masalalarO\'quv qo\'llanma
SINOV TESTI
X(x; 0; 0) nuqta B(1;2;3) va C(-1;3;4) nuqtalardan teng uzoqlikdaligi ma’lum bo‘lsa, x ni toping. -1 B) -2 C) -3 D) 3 M(1; -2) va A(-2; -6) nuqtalar orasidagi masofaning yarmini toping.
A) 3,5 B) 5 C) 4,5 D) 2,5 Agar X(1; 0), B(1; 3) va C(4; 3) bo‘lsa ABC uchburchakning turi qanday bo‘ladi? teng yonli
to‘g‘ri burchakli
teng yonli to‘g‘ri burchakli
teng tomonli Uchlari X(3; 2) va B(-4; 1) nuqtalarda bo‘lgan AB kesma o‘rtasining koordinatalarini toping. (-0,5; 1,5) B) (1,5;-0,5) C) (1,5;0,5) D) (0,5;-1,5) AB CD parallelogram C(5; 8) uchining koordinatalari, 0(4; 5) esa parallelogram diagonallarining kesishish nuqtasi. Parallelogramm A uchining koordinatalarini toping. (2; 3) B) (3; 2) C) (1;4) D) (4;1) Uchburchakning koordinatalari X(1; 2), B(3; 4) va C(5;-1)
nuqtalarda joylashgan. Shu uchburchak medianalarining kesishgan nuqtasi koordinatalarini toping. (2; 3) B) (3; 2) C) (3;3) D) (3;5/3) Uchlari X(4; 5; 1), B(2; 3; 0) va C(2; 1; -1) nuqtalarda joylashgan uchburchakning BD medianasi uzunligini toping.
A) 1 B) 2 C) 10 D) 3 a(2; -5) vektorning i va j ortlar bo‘yicha yoyilmasi to‘g‘ri ko‘rsatilgan javobni toping. a = 2i - 5j
a = -5f+2/
243
a = -2t + 5j
a = 5t-2y a(0; -4) va b(-2; 2) vektorlar berilgan. Agar b = 3a — c bo‘lsa, c vektorning koordinatalarini toping. (2;-14) B) (3;-6) C) (-2;10) D) (-2;-10) a(1; -2; 3) vektorning oxiri B(2; 0; 4) nuqta bo‘lsa, bu vektorning boshini toping. (1; 2; 1)
(-1; 2; 1)
(1; -2; 1)
(1; 2; -1) a = 2t + 3j va b = 2j bo‘lsa, p = 2a - 3 b vektorlarning koordinatalarini ko‘rsating. (-4; 12) B) (-4; 0) C) (4;0) D) (2;-6) To‘rtburchakning uchi M(2;4), N(-4; 0) va P(2;-2) uchlari
berilgan. Agar MN = 4QP bo‘lsa, Q uchining koordinatalarini toping. (-7;-2) B) (3,5;-1) C) (7;-1) D) (3,5;2) m(-1; 2), p(4; -2), va i^(2; -3) vektorlar berilgan. a = m + 2n vektorni m va p vektorlar orqali ifodalang.
5^1-, - - m + - p
-m + 2p
3m - 4p
2m + p Agar X(-5; 2; 8) nuqta va 715(-3; 4; 1), BD(-2; 4; 1) vektorlar berilgan bo‘lsa, ABCD parallelogram C uchining koordinatalari yig‘indisini toping. 8 B) 10 C) 11 D) 12 a(1; 4/3) vektor berilgan. 3a vektorning modulini toping.
A) 4,5 B) 3,5 C) 5 D) 5,5 a(1; 2; 3) va b(4; -2; 9) bo‘lsa, c = a + b vektorning uzunligini toping.
244
A) 5,5 B) 4 C) 13 D) 8 n(-2; 6; 3) vektorga yo‘nalishdosh bo‘lgan birlik vektorning koordinatalarini toping. (2-6-3)
' \7'7 ' 77 (-1;-3; —1)
(-3;1;D
(-2;6;3)
777 d(3; 1) va ¿>(1; 3) vektorlarga qurilgan parallelogram
diagonallarining uzunliklari yig‘indisini toping.
A) 272 B) 6 C) 672 D) 8 |a| = 7137, |a + £>| = 20 va |a — ¿| = 18 bo‘lsa, |i>| ni toping.
A) 1176 B) 15 C) 12 D) 8 n(4; —12; z) vektorning moduli 13 ga teng bo‘lsa, z ning qiymatini toping.
A) 3 B) 4 C) -3 D) ±3 Absissa o‘qiga nisbatan M(-3; 5) nuqtaga simmetrik bo‘lgan nuqtani toping.
A)(-3;-5) B)(3; 5) C)(3; -5) D)(-3; 5) Uchlari X(2; 4), B(-3;-2), C(-3;4) va D(2;-2) nuqtalarda bo‘lgan to‘g‘ri to‘rtburchakni perimetrini toping.
A)10 B)23 C) 40 D)22
23.Ordinata o‘qiga nisbatan M(-4; -9) nuqtaga simmetrik bo‘lgan nuqtani toping.
A)(4;9) B)(4;-9) C)(-4; -9) D)(-4;9) Uchlari A(1; 1), B(-2; 1) va C(1;7) nuqtalarda bo‘lgan
uchburchakning yuzini toping.
A) 9 B) 18 C) 8 D) 5 ABCD parallelogrammda A(1; 3) va C(-5;7) bo‘lsa, uning digonallar kesishgan nuqtasi koordinatasini toping.
A)(5; 2) B)(-4; 3) C)(-2; 5) D)(2; 1)
245
ABCD rombda B(4; 3) uchi va 0(2; 1) diagonallar kesishgan
nuqtasi koordinatasi bo‘lsa, uning D(x; y) uchi koordinatasini toping. A)(1; 2) B)(0;-1) C)(2; 2) D)(1; 3) Agar |a| =4, |b| = 5 va ^ = 300 bo‘lsa, |ab| =?
A) 20 B) 10 C) 10V3 D) 41 Koordinatalari bilan berilgan a(2; -3; 1), ¿>(1; 0; 4) va c(5; -2; 0) vektorlarning aralash ko‘paytmasi abc hisoblansin.
A) 0 B) 23 C) -46 D) -23 m parametrning qanday qiymatlarida a(2; 0; 1), a(1; 1; m), va c(-1; 3m; 1) vektorlar komplanar bo‘ladi? 1 va -0,5
1 va -1
0,5 va 1
0,5 va -1 a(2; 4; 1) va b(-1; 1; 3) vektorlarning vektor ko‘paytmasini toping. (11;-7; 6)