|
|
səhifə | 56/61 | tarix | 18.02.2022 | ölçüsü | 0,85 Mb. | | #114569 |
| Analitik geometriyadan misol va masalalarO\'quv qo\'llanmaх = ±^У
98. Asimptotalari у = ±4x , fokuslari orasidagi masofa 20 bo‘lgan giperbolaning ekssentrisitetini toping.
5 5 4 3
A) E = - B) £ = - C) c = - D) £ = -
254
Quyidagi nuqtalardan qaysi biri ushbu giperbolani qanoatlantiradi:
*2 _ y2 _ i
20 14 —
(2-/10 ; V14) C) (V10 ; V14)
(2V10 ; 2V14) D) (V10 ; 2V14)
Teng tomonli giperbola x2 — y2 = 18 berilgan. Unga fokusdosh
x— — y2 = 1
7 20 16
f — ^ =1
o‘qiga nisbatan
simmetrik bo‘lgan B
C) B(4;f)
o‘qiga nisbatan
5^
C) C(2;f)
D) B(—4;^) simmetrik bo‘lgan C
D) C(2;^)
bo‘lib, M(10; 8) nuqtadan o‘tuvchi giperbolaning tenglamasi topilsin.
A) T2 — y2 = 1
b) |22—y2=1
X(4;2^) nuqtaga qutb
nuqtani toping.
2^ 5^
A) B( 4;-) B) B(4;^)
2re.
B(2;—) nuqtaga qutb
nuqtani toping.
A) C(2;|) B) C(—2;^)
X(3;-) nuqtani qutb o‘qi atrofida — burchakka musbat
64
yo‘nalishda burilsa bu nuqtaning koordinatalarini aniqlang. 17^ 2^ 2^ 5^
A) (3;-7^) B) (3;^) C) (—3;^) D) (3;^)
Qutb koordinatalar sistemasida X(8;— -^) va B(6;^) nuqtalar
berilgan. AB kesma o‘rtasining koordinatalarini toping.
2 77 77 2 77 2 77
* x z z-x 1 v X ■ x X z* z“v / v X z*~x x z* J v X ■ X x z* i w X
A) (3;—^) B) (2;-) C) (1;—) D) (1;-)
Dekart koordinatalar sistemasida M(V3; 1) nuqta berilgan. Uni
qutb koordinatalarini toping.
^ 2^ ^
4 x z* 1 w X i x x z* Ad / v x x—•< x z* 1 w X
A) (2; 6) B) (1; -) C) (2; 3)
D) (3;|)
Qutb koordinatalarida a radiusli, markazi koordinatalar boshida
bo‘lgan aylana tenglamasini toping.
A) r = 2a B) r = a C) r = a2 D) r = 3a
255
Qutb koordinatalar sistemasida M(3;—) va A(2;-) nuqtalar
6' 6'
orasidagi masofani toping.
A) V19 B) 2 C) 3 D)V5
2
Qutb koordinatalar sistemasida r — ^os tenglama bilan berilgan
chiziqni dekart koordinatalar sistemasida tenglamasini toping.
y2 — 4(x + 1)
y2 + x2 — 1
x — y2
^2 + ^—1
Qutb koordinatalar sistemasida M(3;—) va A(4;-) nuqtalar
" v ’6' " 3'
orasidagi masofani toping.
A) 6 B) 3 C) 7 D) 5
P — 411^^ parabolaning direktrisa tenglamasini toping.
A) x — 5 B) x — -3 C) x — -1 D) x — -2
Quyidagi 3x2 — 2xy + 3y2 + 2x — 4y + 1 — 0 egri chiziqni markazi topilsin.
A) (—1;1) B) (-1;8) C) (1;-4) D) (2;-3)
4xy + 3y2 + 16% + 12y - 36 — 0 berilgan ikkinchi tartibli chiziqning turini aniqlang.
A)giperbola B)parabola C)parallel to‘g‘ri chiziqlar D)ellips
Ushbu 9x2 - 16y2 - 54% - 64y - 127 — 0 ikkinchi tartibli chiziqning eksentrisitetini aniqlang.
3 4 5 7
A) 4 B) 5 C) 4 D) 5
Quyidagi 32x2 + 52xy - 7y2 + 180 — 0 egri chiziqning
asimptotalarini toping.
A) ±|x B) ±4% C) ±4% D) ±i*
14x2 + 24xy + 21y2 - 4x + 18y - 139 — 0 ellipsning fokuslari orasidagi masofani aniqlang.
A) 5 B) 6 C) 10 D) 8
256
Ushbu 7x2 + 60xy + 32y2 — 14% — 60y + 7 = 0 ikkinchi
tartibli chiziqning tipini aniqlang.
A) giperbola B) parallel to‘g‘ri chiziqlar C) ellips D) parabola
Quyidagi 9x2 + 24xy + 16y2 — 230% + 110y — 475 = 0
tenglama bilan berilgan ikkikinchi tartibli chiziqning direktrisasini aniqlang.
A) X = — — B) X = — — C) X = — — D) X = — —
Ushbu 5x2 + 12xy — 12% — 22y — 19 = 0 egri chiziqning haqiqiy o‘qining burchak koeffitsiyentini aniqlang.
A) к =1 B) к = 3 C) к = 2 D) к =1
Quyidagi 5x2 + 8xy + 5y2 — 18% — 18y + 9 = 0 ikkinchi
tartibli chiziqning markazi qaysi nuqtada joylashgan?
A) (1;1) B) (—2; 3) C) (—3;1) D) (—1;1)
6xy — 8y2 + 12% — 26y — 11 = 0 tenglama bilan berilgan ikkinchi tartibli chiziqning turini aniqlang.
A) parabola B) ellips C) parallel to‘g‘ri chiziqlar D) giperbola.
257
SINOV TESTI JAVOBLARI
№
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
0
|
|
С
|
D
|
C
|
A
|
B
|
D
|
A
|
A
|
A
|
1
|
A
|
C
|
B
|
A
|
D
|
C
|
C
|
D
|
C
|
B
|
2
|
D
|
A
|
D
|
B
|
A
|
C
|
B
|
B
|
C
|
A
|
3
|
A
|
C
|
B
|
A
|
B
|
C
|
A
|
A
|
B
|
A
|
4
|
B
|
C
|
B
|
D
|
A
|
B
|
A
|
C
|
B
|
D
|
5
|
B
|
D
|
A
|
D
|
B
|
C
|
D
|
A
|
C
|
B
|
6
|
A
|
C
|
D
|
B
|
A
|
D
|
B
|
A
|
C
|
D
|
7
|
B
|
A
|
C
|
A
|
D
|
B
|
C
|
D
|
B
|
A
|
8
|
B
|
C
|
D
|
B
|
C
|
A
|
A
|
B
|
D
|
C
|
9
|
A
|
D
|
B
|
B
|
C
|
A
|
D
|
C
|
B
|
A
|
10
|
C
|
B
|
D
|
A
|
C
|
A
|
B
|
A
|
A
|
D
|
11
|
C
|
B
|
A
|
C
|
A
|
C
|
B
|
D
|
C
|
A
|
12
|
D
|
|
|
|
|
|
|
|
|
|
258
JAVOBLAR
1) 5; 2) Т34; 3) 13; 4) Т2. 1.2.2. 1) /137; 2) 5; 3) 11; 4) 1.
1.2.3. (2; 4). 1.2.4.(3; 3). 1.2.5.(—; б). 1.2.6. (0; -10). 1.2.7. (0; —).
v ’ 7 v ’ 7 \24 J \ 2 )
1.2.8. (-5;0). 1.2.9. (89; 0). 1.2.10. (5;3). 1.2.11. ЛВС uchburchak 3 к10
to‘g‘ri burchakli. 1.2.12. (-7;0) va (17; 0); (0;9-10Т2),
(0;9 + 10V2). 1.2.13. (0; 11 + 4Тб), (0; 11 - 4Тб). 1.2.14. 5.
1.2.15. (2; 2); (12; -12); (б; -б); (-4; 4). 1.2.16. М(-5; 4). 1.2.17. Markazi (-1; -2) nuqtada, radiusi г = 5 ga teng. 1.2.18. В(2; 5); D(16; 3). 1.2.19. M(2; 10). 1.2.20. M1(1; -1), г1 = 1; М2(-5; -5), г2 = 5. 1.2.21. М1(4 + Тб; 4 + Тб), г1 = 4 + Тб; М2(4 - Тб; 4 - -Тб), г2 = 4 - Тб. 1.2.22. 5. 1.2.23. /29. 1.2.24. 5 + 2Т10 + 5Т5. 1.2.25. (-5; 2). 1.2.27. (3; 5); (4; 2); (5; -1). 1.2.28. (4; -4); (2; 5).
1.2.29. 8. 1.2.30. 13. 1.3.1. (0; 2). 1.3.2. (1; -1). 1.3.3. (3; -3). 1.3.4.
(-2; 2). 1.3.5. (1;3). 1.3.6.(-1; 4); (0;0);
(0;-11). 1.3.8. X = 1 (х1 + х2 + х3);
(1;1). 1.3.7. (11; 0) va \2 2/ 5
У = 1(У1 +У2 +Уз).
(-3; 3); (7; 5); (-3;-3). 1.3.10. (4; 1); (1; 4); (4; 4). 1.3.11.
В(0;-7). 1.3.12. W(0;9). 1.3.13. В(12;-4). 1.3.14. С(10;9);
D(4;-4). 1.3.15. 4. 1.3.16. М(12;-11) 1.3.17. D(8;-18). 1.3.18.
С(0;-1); D(4;-4). 1.3.19. (0; у) ;
(-3;у). 1.3.20. 4(3;-1);
В(0;8). 1.3.21. 4(-5;3); В(4; 3). 1.3.22. В (-5;^). 1.3.23.
С(1;-4). 1.3.24. С(-9; 7). 1.3.25. 4(100;-131); В(-225; 184).
Dostları ilə paylaş: |
|
|