Geometriyadan misol va masalalar



Yüklə 0,85 Mb.
səhifə56/61
tarix18.02.2022
ölçüsü0,85 Mb.
#114569
1   ...   53   54   55   56   57   58   59   60   61
Analitik geometriyadan misol va masalalarO\'quv qo\'llanma

х = ±^У


98. Asimptotalari у = ±4x , fokuslari orasidagi masofa 20 bo‘lgan giperbolaning ekssentrisitetini toping.

5 5 4 3

A) E = - B) £ = - C) c = - D) £ = -


254



  1. Quyidagi nuqtalardan qaysi biri ushbu giperbolani qanoatlantiradi:


*2 _ y2 _ i

20 14

  1. (2-/10 ; V14) C) (V10 ; V14)

  2. (2V10 ; 2V14) D) (V10 ; 2V14)

  1. Teng tomonli giperbola x2 — y2 = 18 berilgan. Unga fokusdosh


  1. x— — y2 = 1

7 20 16

  1. f — ^ =1

o‘qiga nisbatan


simmetrik bo‘lgan B


C) B(4;f)
o‘qiga nisbatan



5^

C) C(2;f)




D) B(—4;^) simmetrik bo‘lgan C


D) C(2;^)


bo‘lib, M(10; 8) nuqtadan o‘tuvchi giperbolaning tenglamasi topilsin.

A) T2 — y2 = 1



b) |22—y2=1

  1. X(4;2^) nuqtaga qutb
    nuqtani toping.


2^ 5^

A) B( 4;-) B) B(4;^)



2re.

  1. B(2;—) nuqtaga qutb
    nuqtani toping.


A) C(2;|) B) C(—2;^)


  1. X(3;-) nuqtani qutb o‘qi atrofida — burchakka musbat

64

yo‘nalishda burilsa bu nuqtaning koordinatalarini aniqlang. 17^ 2^ 2^ 5^

A) (3;-7^) B) (3;^) C) (—3;^) D) (3;^)



  1. Qutb koordinatalar sistemasida X(8;— -^) va B(6;^) nuqtalar


berilgan. AB kesma o‘rtasining koordinatalarini toping.

2 77 77 2 77 2 77

* x z z-x 1 v X ■ x X z* z“v / v X z*~x x z* J v X ■ X x z* i w X

A) (3;—^) B) (2;-) C) (1;—) D) (1;-)



  1. Dekart koordinatalar sistemasida M(V3; 1) nuqta berilgan. Uni

qutb koordinatalarini toping.

^ 2^ ^

4 x z* 1 w X i x x z* Ad / v x x—•< x z* 1 w X

A) (2; 6) B) (1; -) C) (2; 3)




D) (3;|)


  1. Qutb koordinatalarida a radiusli, markazi koordinatalar boshida


bo‘lgan aylana tenglamasini toping.

A) r = 2a B) r = a C) r = a2 D) r = 3a




255



  1. Qutb koordinatalar sistemasida M(3;—) va A(2;-) nuqtalar

6' 6'

orasidagi masofani toping.

A) V19 B) 2 C) 3 D)V5

2

  1. Qutb koordinatalar sistemasida r — ^os tenglama bilan berilgan

chiziqni dekart koordinatalar sistemasida tenglamasini toping.

  1. y2 — 4(x + 1)

  2. y2 + x2 — 1

  3. x — y2

  4. ^2 + ^—1

  1. Qutb koordinatalar sistemasida M(3;—) va A(4;-) nuqtalar

" v ’6' " 3'


orasidagi masofani toping.

A) 6 B) 3 C) 7 D) 5

  1. P — 411^^ parabolaning direktrisa tenglamasini toping.

A) x — 5 B) x — -3 C) x — -1 D) x — -2

  1. Quyidagi 3x2 — 2xy + 3y2 + 2x — 4y + 1 — 0 egri chiziqni markazi topilsin.

A) (—1;1) B) (-1;8) C) (1;-4) D) (2;-3)

  1. 4xy + 3y2 + 16% + 12y - 36 — 0 berilgan ikkinchi tartibli chiziqning turini aniqlang.


A)giperbola B)parabola C)parallel to‘g‘ri chiziqlar D)ellips

  1. Ushbu 9x2 - 16y2 - 54% - 64y - 127 — 0 ikkinchi tartibli chiziqning eksentrisitetini aniqlang.

3 4 5 7

A) 4 B) 5 C) 4 D) 5


  1. Quyidagi 32x2 + 52xy - 7y2 + 180 — 0 egri chiziqning

asimptotalarini toping.

A) ±|x B) ±4% C) ±4% D) ±i*

  1. 14x2 + 24xy + 21y2 - 4x + 18y - 139 — 0 ellipsning fokuslari orasidagi masofani aniqlang.

A) 5 B) 6 C) 10 D) 8


256



  1. Ushbu 7x2 + 60xy + 32y2 — 14% — 60y + 7 = 0 ikkinchi

tartibli chiziqning tipini aniqlang.

A) giperbola B) parallel to‘g‘ri chiziqlar C) ellips D) parabola

  1. Quyidagi 9x2 + 24xy + 16y2 — 230% + 110y — 475 = 0

tenglama bilan berilgan ikkikinchi tartibli chiziqning direktrisasini aniqlang.

A) X = — — B) X = — — C) X = — — D) X = — —



  1. Ushbu 5x2 + 12xy — 12% — 22y — 19 = 0 egri chiziqning haqiqiy o‘qining burchak koeffitsiyentini aniqlang.

A) к =1 B) к = 3 C) к = 2 D) к =1

  1. Quyidagi 5x2 + 8xy + 5y2 — 18% — 18y + 9 = 0 ikkinchi

tartibli chiziqning markazi qaysi nuqtada joylashgan?

A) (1;1) B) (—2; 3) C) (—3;1) D) (—1;1)



  1. 6xy — 8y2 + 12% — 26y — 11 = 0 tenglama bilan berilgan ikkinchi tartibli chiziqning turini aniqlang.

A) parabola B) ellips C) parallel to‘g‘ri chiziqlar D) giperbola.


257





SINOV TESTI JAVOBLARI



0

1

2

3

4

5

6

7

8

9

0




С

D

C

A

B

D

A

A

A

1

A

C

B

A

D

C

C

D

C

B

2

D

A

D

B

A

C

B

B

C

A

3

A

C

B

A

B

C

A

A

B

A

4

B

C

B

D

A

B

A

C

B

D

5

B

D

A

D

B

C

D

A

C

B

6

A

C

D

B

A

D

B

A

C

D

7

B

A

C

A

D

B

C

D

B

A

8

B

C

D

B

C

A

A

B

D

C

9

A

D

B

B

C

A

D

C

B

A

10

C

B

D

A

C

A

B

A

A

D

11

C

B

A

C

A

C

B

D

C

A

12

D





























258



JAVOBLAR


  1. 1) 5; 2) Т34; 3) 13; 4) Т2. 1.2.2. 1) /137; 2) 5; 3) 11; 4) 1.

1.2.3. (2; 4). 1.2.4.(3; 3). 1.2.5.(—; б). 1.2.6. (0; -10). 1.2.7. (0; —).

v7 v7 \24 J \ 2 )

1.2.8. (-5;0). 1.2.9. (89; 0). 1.2.10. (5;3). 1.2.11. ЛВС uchburchak 3 к10

to‘g‘ri burchakli. 1.2.12. (-7;0) va (17; 0); (0;9-10Т2),

(0;9 + 10V2). 1.2.13. (0; 11 + 4Тб), (0; 11 - 4Тб). 1.2.14. 5.

1.2.15. (2; 2); (12; -12); (б; -б); (-4; 4). 1.2.16. М(-5; 4). 1.2.17. Markazi (-1; -2) nuqtada, radiusi г = 5 ga teng. 1.2.18. В(2; 5); D(16; 3). 1.2.19. M(2; 10). 1.2.20. M1(1; -1), г1 = 1; М2(-5; -5), г2 = 5. 1.2.21. М1(4 + Тб; 4 + Тб), г1 = 4 + Тб; М2(4 - Тб; 4 - -Тб), г2 = 4 - Тб. 1.2.22. 5. 1.2.23. /29. 1.2.24. 5 + 2Т10 + 5Т5. 1.2.25. (-5; 2). 1.2.27. (3; 5); (4; 2); (5; -1). 1.2.28. (4; -4); (2; 5).


1.2.29. 8. 1.2.30. 13. 1.3.1. (0; 2). 1.3.2. (1; -1). 1.3.3. (3; -3). 1.3.4.


(-2; 2). 1.3.5. (1;3). 1.3.6.(-1; 4); (0;0);

(0;-11). 1.3.8. X = 1 (х1 + х2 + х3);


(1;1). 1.3.7. (11; 0) va \2 2/ 5

У = 1(У1 +У2 +Уз).


  1. (-3; 3); (7; 5); (-3;-3). 1.3.10. (4; 1); (1; 4); (4; 4). 1.3.11.


В(0;-7). 1.3.12. W(0;9). 1.3.13. В(12;-4). 1.3.14. С(10;9);


D(4;-4). 1.3.15. 4. 1.3.16. М(12;-11) 1.3.17. D(8;-18). 1.3.18.


С(0;-1); D(4;-4). 1.3.19. (0; у) ;


(-3;у). 1.3.20. 4(3;-1);


В(0;8). 1.3.21. 4(-5;3); В(4; 3). 1.3.22. В (-5;^). 1.3.23.


С(1;-4). 1.3.24. С(-9; 7). 1.3.25. 4(100;-131); В(-225; 184).



Yüklə 0,85 Mb.

Dostları ilə paylaş:
1   ...   53   54   55   56   57   58   59   60   61




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin