Geometriyadan misol va masalalar



Yüklə 0,85 Mb.
səhifə55/61
tarix18.02.2022
ölçüsü0,85 Mb.
#114569
1   ...   51   52   53   54   55   56   57   58   ...   61
Analitik geometriyadan misol va masalalarO\'quv qo\'llanma

a + b + c vektorning modulini aniqlang.


A) 12 B) 10

  1. Determinantni hisoblang.

A) 3 B) 4

  1. Determinantni hisoblang.

A)17 B) 14

  1. Determinantni hisoblang.

A) 92 B)100

  1. Determinantni hisoblang.

A)51 B) 207


  1. 9 D)11

*5

42 4/125

C)-3 D)2


  1. %+1=1

-4 -21

C) 15 D)-17

4 -3 5

3-2 8

1 -7 -5

C)-87 D)102

4 -3 5 1

3 -2 8 3

8 -6 10 2

1 -5 4 3



C)-43 D) 0


  1. Quyidagi chiziqli tenglamalar sistemasini Kramer usulida yeching.
    í3y - X = -17
    ^5% + 3y = -5



A)(5;-2) B)(2;-5) C)(-2;5) D)(-5;2)

  1. Quyidagi chiziqli tenglamalar sistemasini Kramer usulida yeching.


248





'x + y + 4 z = 1

< 2 x + y + 6 z = 2

3x + 3 y + 13z = 2


A)(-3; 2; 1) B)(2;3;-1) C)(1;2;3) D)(3;2;-1)

  1. a va ¿> vektorlar o‘zaro ^ = ■y burchak hosil qiladi. |cz| = 1, r.^-12

¡¿>| = 2 ni bilgan holda, quyidagini hisoblang: [a ¿>] .


A) 3 B) 4 C) 9 D) 2

  1. a(3; -1; -2) va ¿>(1; 2; -1) vektorlar berilgan. Vektor ko‘paytmalar koordinatasini toping: [a ¿>].

A)(5;-1;7) B)(-3; 1;-7) C)(5; 1;-4) D)(5; 1; 7)

  1. a(3; -1; -2) va ¿>(1; 2; -1) vektorlar berilgan. Vektor ko‘paytmaning koordinatasini toping: [(2 a + ¿>)b].


A)(5;1;6) B)(10; 2; 14) C)(2; 5; 3) D)(4; 1; 5)

55. X(2; -1; 2), B(1; 2; -1) va C(3; 2; 1) nuqtalar berilgan. Vektor ko‘paytmaning koordinatasini toping: [ABBC].


A)(8; 2; -4) B)(5; 3; 12) C)(6; -4; -6) D)(3; -2; 5)

56. X(2; -1; 2), B(1; 2; -1) va C(3; 2; 1) nuqtalar berilgan. Vektor ko‘paytmalar koordinatalarini toping: [(BC - 2CA)CB].


A)(12; -8; 12) B)(10; 4; -6) C)(-11; 6; 4) D)(-12; 8; 12)

57. a(2; -2; 1) va ¿>(2; 3; 6) vektorlar orasidagi burchak sinusini

hisoblang.

5^17

A) sina =

7 21

... . 5V17

C) sina =

21

DA ■ 3^17

B) sina =

21

TAI ■ 4^17

D) sina =

7 21


58. X(3; -2; 5), B(1; 4; -3) va C(-6; 2; 4) nuqtalar berilgan bo‘lsa, [BC AC]AB aralash ko‘paytmasini toping.

A) -13 B) -28

C)0 D)28


59. C(-2; 4; 3), 0(1; -5; 6) va E(3; 7; -4) nuqtalar berilgan bo‘lsa, (2CD - 3DE)(DC + 3CE)(2CD - ED) aralash ko‘paytmasini toping.


249



A) -3 B) 0 C) 3 D)-2

  1. a = i + 6j-4k, b = -3t + 2j + 7k va c = -5t-6j + 2k vektorlar berilgan bo‘lsa, [a c]b aralash ko‘paytmasini toping.

A) 240 B) 244 C) -240 D)120

  1. a = t + 6j-4k, b = -3t + 2j + 7k va c = -5t-6j + 2k vektorlar berilgan bo‘lsa, (b + 2a)(C + 3b)(2a - c) aralash ko‘paytmasini toping.


A) -920 B) 940 C) 960 D)-930

  1. a(6; -4; 8) va b(-2; 4; 0) vektorlar berilgan bo‘lsa:

a+b(b-1) topilsin.

A)(24; 12; -12) B)(-14; 13; 12)

C)(12; 24; -12) D)(-24; -12; 12)


  1. a (8; 4; 1) va b(2; -2; 1) vektorlardan yasalgan parallelogramm


yuzi hisoblansin.

A) 8V3 B) 18V2 C)18V3 D)9V2



  1. Berilganlarga ko‘ra a, b va c vektorlarning aralash ko‘paytmasini toping. a = k, b = t, c = j.

A) 1 B) -1 C) 0 D)-2

  1. a, b va c vektorlarning aralash ko‘paytmasini toping.

a = t+j, b = t - j, c = k.

A) 1 B) -1 C) 0 D)-2

  1. a va b vektorlar o‘zaro ^ = “ burchak tashkil qiladi va C vektor bilan perpendikulyar. |a| = 6, |b| = 3 va |c| = 4 berilgan bo‘lsa, abc ni toping.


A) 20 B) 36 C)-12 D) 24

  1. a = 2t + 3j + 4k, b = 3t + 2j + k va c=j-k vektorlar berilgan bo‘lsa, ([ac] b) ni toping.

A) -15 B) 12 C) 15 D) 10


250



  1. a = 2t + 3j + 4k, b = 3t + 2j + k va c=j — k vektorlar berilgan bo‘lsa, [(a — 2c)(3b — 2a)] ni toping.

A)(5; —40; 5) B)(40; 15; —5)

C)(—5; 40; —5) D)(—15; 45; 5)



  1. a = — i + 3j + k b = j + 2k va c = 2a — 3b vektorlar berilgan bo‘lsa, a[bc] c ni toping.

A)—146 B) —156 C) 180 D) —180

  1. a = — i + 3j + k, b = j + 2k va c = 2a — 3b vektorlar berilgan bo‘lsa, [a[ac]] b[ac] ni toping.

A)1926 B) 1350 C) 2120 D)2020

  1. Quyida berilgan aylana tenglamasidan aylana markazi va radiusi topilsin.

X2 + y26y = 0

  1. R = 3, (0; 3); C) R = 9, (0;3);

  2. R = 3, (0; —3); D) R = 9, (0; —3).

  1. Ellipsning yarim o‘qlarini toping: “ + ^ = 1.

A) ±3 va ±5 C) 3 va 5

B) ±5 va ±3 D) 5 va 3

  1. Quyidagilardan qaysi biri ellips tenglamasini ifodalaydi?

  1. x2 + 25y2 =4 C) x2 — 16y2 = 16

  2. x2 + 9y2 = 0 D) x2 — y2 = 1

  1. Radiusi R = 5, markazi (2; —4) nuqtada bo‘lgan aylana tenglamasini toping.

  1. x2 + y2 + 4x + 8y + 5 = 0

  1. x2 + y24x — 8y + 5 = 0

  1. x2 + y2 + 4x — 8y — 5 = 0

  1. x2 + y24x + 8y — 5 = 0

  1. Ellips fokuslarining koordinatalarini toping: + = 1.

A) (±6; 0) C) (6; 0) B) (0;±6) D) (0;—6)


251



  1. Quyidagi ellips tenglamasining ekssentrisitetini aniqlang: x2 + 4y2 = 1


B) e = ±V3


77. Direktrisalari


3

  1. e = —

2

V3

  1. £ = ±^ 2

x = ± - ekssentrisiteti e = bo‘lgan ellips


  1. 3.v2 + 7y2 = 1

  1. 3.v2 + 7y2 = 21

tenglamasining fokuslari orasidagi masofani


tenglamasi topilsin.

  1. 7x2 + 3y2 = 21

  2. 7x2 + 3y2 = 1

  1. Quyidagi ellips

aniqlang: — + — = 1
25 169


A) 8 B) 12 C)18 D) 24

  1. Yarim o‘qlari 2 va 5 bo‘lgan ellips tenglamasini ko‘rsating.

  1. i2 + ^2=1 C) - + 72 = 1

7 4 25 7 2 5


  1. - + 72 = 1 d) - + 72 = 1

7 5 2 7 25 4

  1. Tekislikda berilgan nuqtadan bir xil uzoqlikdagi nuqtalarning

geometrik o‘rniga deyiladi.

  1. ellips C) shar

  2. aylana D) giperbola

  1. Parabola tenglamasining umumiy ko‘rinishini ko‘rsating.

  1. ^ + 72=1 C) y2 = 2px

a2 b2

  1. A'2 + y2 = R2 D) 22 - 72 = 1

a2 b2

  1. y2 = 8% parabolaning direktrisasini toping.

A) y = 2 C) x = 2


B) y = -2 D) x = -2

  1. Direktrisasi y = —6 bo‘lgan parabola tenglamasini aniqlang.

  1. y2 = 24% C) y2 = —24%

  2. x2 = 24y D) x2 = —24y

  1. y2 = 12% parabola tenglamasining fokusi nimaga teng?


252



  1. F(0; 3) C) F(3; 0)

  2. F(0; -3) D) F(-3;0)

  1. Agar F(-5; 0) fokus va direktrisa Otenglamasi x = 5 bo‘lsa, parabola tenglamasini tuzing.

  1. y2 = -20% C) y2 = -10%

  2. y2 = 20% D) y2 = 10%

  1. Quyidagi nuqtalardan qaysilari y2 = 18% parabolaga tegishli?

  1. A(2; 6) C) C(1; 18)

  2. B(2; 36) D) D(-1;18)

  1. Ushbu nuqtalar tegishli bo‘lgan parabola tenglamasi toping?

A(-7; 7),B(-1;V7).

  1. y2 = -6% + 7 C) y2 = -2% + 5

  2. y2 = -7% D) y2 = -V7x

  1. Parabolaning fokusidan direktrisasigacha bo‘lgan masofa 4 ga teng.

Uning kanonik tenglamasini tuzing.

  1. y2 = 16% C) y2 = -8%

  2. y2 = -16% D) y2 = 8x

  1. y2 = 20% parabola tenglamasi berilgan. Fokal radiusi 10 ga teng bo‘ladigan M nuqtani toping.

  1. (8; -11), (8; 11) C) (11; -8), (11; 8)

  2. (-11; 8), (11; 8) D) (-8; 11), (8; 11)

  1. x2 = 10y parabola (5; 7) nuqtadan o‘tganda ushbu nuqtada fokal radius topilsin.

  1. V4Ï C) V26

  2. V53 D) V50

  1. Giperbola tenglamasi uchun qaysi shart bajarilganda teng yonli giperbola deyiladi?

  1. а Ф b C) a > b

  2. а < b D) а = b

  1. Haqiqiy o‘qi 10, mavhum o‘qi 8 ga teng bo‘lgan giperbola tenglamasi topilsin.


253




  1. Í2 - 2Ï = 1

7 64 100

  1. 1

  1. x— - y— = 1

7 10 8

  1. - y2 = 1


  1. 93.Fokuslari orasidagi masofa 2c = 8, ekssentrisiteti c = 4 bo‘lgan giperbolaning kanonik tenglamasini aniqlang.

    у - y2 = 1

  2. ^2 - y2=1

94 £2-^=1

a2 b2

  1. — - ^ = 1

7 7 9

  1. ^2 + y2 = 1

giperbolaning ixtiyoriy nuqtasidan uning ikki


asimptotasigacha bo‘lgan masofalar ko‘paytmasi har doim ga

teng bo‘ladi.

ab

  1. о , о a2+b2 a2b2



a+b

C)

  1. a2+b2



a+b


95. ^-^=1 giperbola tenglamasi berilgan bo‘lsa, uning yarim

o‘qlari topilsin.

  1. 3 va 8

  2. 8 va 3

96. Yarim o‘qlari nimaga teng?

  1. -8 va -3

  1. -3 va -8

a = 6, b = 4 bo‘lgan giperbolaning ekssentrisiteti


  1. A) 4|3 B)-4|3 C) -4|3 D) 4|3


    97. ~ -^ = 1 giperbolaning asimptotalarini aniqlang.

    y = ±Jüx

  2. x = JIy

  1. у = ±^х


Yüklə 0,85 Mb.

Dostları ilə paylaş:
1   ...   51   52   53   54   55   56   57   58   ...   61




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin